# The Laplacian operator on graphs, simplicial complexes, and on multicomplexes 

Jan Snellman ${ }^{1}$<br>${ }^{1}$ Matematiska Institutionen<br>Linköpings Universitet

Stockholm, June 12, 2009

## Contents

1 Graph Laplacians

2 Laplacians on simplicial complexes

3 Laplacians on multicomplexes

4 Arithmetical functions with Cauchy convolution

## Graph Laplacian

Discrete analogs of div and grad
Let $G$ be an oriented graph. The discrete analog of a vector field is a function defined on the edges, and the divergence operator maps such functions to functions on the vertices by

$$
D(f)(v)=\sum_{a \xrightarrow{e} v} f(e)-\sum_{v \xrightarrow{e} b} f(e) .
$$



## Graph Laplacian

W.r.t. the natural basis, this operator has matrix

$$
D=\begin{array}{ccccccc} 
& a & b & c & d & f & g \\
1 & -1 & 0 & -1 & 0 & 0 & 1 \\
2 & 1 & -1 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 1 & 1 & 0 & 0 \\
4 & 0 & 1 & 0 & -1 & 1 & 0 \\
5 & 0 & 0 & 0 & 0 & -1 & -1
\end{array}
$$

## Graph Laplacian

The discrete analog of the gradient is the operator $D^{T}$ which maps functions defined on vertices to functions defined on edges:

$$
D^{T}(g)(e)=g(b)-g(a) \quad a \xrightarrow{e} b
$$



## Graph Laplacian

W.r.t. the natural basis, this operator has matrix

$$
D^{T}=\left(\begin{array}{ccccccc} 
& a & b & c & d & f & g \\
1 & -1 & 0 & -1 & 0 & 0 & 1 \\
2 & 1 & -1 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 1 & 1 & 0 & 0 \\
4 & 0 & 1 & 0 & -1 & 1 & 0 \\
5 & 0 & 0 & 0 & 0 & -1 & -1
\end{array}\right)^{\top}
$$

## Graph Laplacian

The discrete analog of the laplacian operator "div" compose "grad" is then

$$
Q=D D^{T}
$$

which is an operator that maps functions defined on vertices to functions defined on vertices.


The matrix of $Q$ is

$$
\left[\begin{array}{ccccc}
3 & -1 & -1 & 0 & -1 \\
-1 & 2 & 0 & -1 & 0 \\
-1 & 0 & 3 & -1 & -1 \\
0 & -1 & -1 & 3 & -1 \\
-1 & 0 & -1 & -1 & 3
\end{array}\right]
$$

## Facts about graph Laplacian $Q$

Suppose $G$ has $n$ vertices, $c$ components, $Q=D D^{T}, \Delta$ valency, $A$ adjacency (of undirected graph, so symmetric).

- Symmetric, positive definite.

■ Does not depend on the orientation! Depends on ordering of vertices, but only up to permutation similarity.
■ Hence eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{1} \geq 0$.
■ In fact, $\lambda_{n}=0$ and $\lambda_{1} \leq n$.

- $Q=\Delta-A$,

■ $\mathrm{rk} Q=n-c$.

- $\lambda_{n-1}>0$ iff $c=1$.

■ Eigenvalues of complement: $\lambda_{i}(\bar{G})=n-\lambda_{n-i+2}$.
■ If $G k$-regular then $A$ has eigenvalues $\theta_{i}=k-\lambda_{i}$.
■ As a quadratic form,

$$
x^{T} Q x=\sum_{\substack{e \\ u \rightarrow v}}\left(x_{u}-x_{v}\right)^{2}
$$

## Spanning trees

## Theorem

Let $u$ be any vertex, and let $Q[u]$ denote the matrix obtained from $Q$ by removing the $u$ 'th row and column. Then the number of spanning trees in $G$ is

$$
\operatorname{det} Q[u]=\frac{1}{n} \lambda_{1} \lambda_{2} \cdots \lambda_{n-1} .
$$

## Majorization of the spectrum

■ $S(G)=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ non-increasing.
■ $D(G)=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ degree-sequence, non-increasing.
Theorem
$S(G)$ majorizes $D(G)$, i.e.,

$$
\forall k: \sum_{j=1}^{k} \lambda_{j} \geq \sum_{j=1}^{k} d_{j}
$$

In particular, $\lambda_{1} \geq d_{1}$.

## Majorization of the spectrum

Furthermore:
Theorem
$D(G)^{T}$ (conjugate partition) majorizes $D(G)$.
Conjecture
$D(G)^{T}$ (conjugate partition) majorizes $S(G)$.

## Integrality of Laplacian spectra

Important question: when are all eigenvalues of $Q$ integers?
■ Iff same holds for complement $\bar{G}$.
■ A tree has integral Laplacian spectrum iff it is a star, $G=K_{i, n-1}$.

$\left[\begin{array}{cccccc}1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right]$

$$
S(G)=(5 / 2+1 / 2 \sqrt{17}, 3,1,1,5 / 2-1 / 2 \sqrt{17}, 0)
$$

## Simplicial complexes

- K simplicial complex.
- $C_{i}=C_{i}(K, \mathbb{R})$ chains.
- Differential

$$
\begin{aligned}
\partial_{i}: C_{i} & \mapsto C_{i-1} \\
{\left[v_{0}, \ldots, v_{i}\right] } & \mapsto \sum_{j}(-1)^{j}\left[v_{0}, \ldots, \hat{v}_{j}, \ldots, v_{i}\right]
\end{aligned}
$$

■ Homology $H_{i}=\frac{\operatorname{ker} \partial_{i}}{\operatorname{im} \partial_{i+1}}$
■ Choose inner product, dual $\partial_{i}^{*}: C_{i} \rightarrow C_{i+1}$.
■ Define Laplacians $L_{i}^{\prime}=\partial_{i+1} \partial_{i+1}^{*}, L_{i}^{\prime \prime}=\partial_{i}^{*} \partial_{i}, L_{i}=L_{i}^{\prime}+L_{i}^{\prime \prime}$. (Duval and Reiner).

- $L_{i}^{\prime}$ direct generalization of graph Laplacian $Q=D D^{T}$.
(Graphs are 1-dim s.c.)
- $L_{i}^{\prime \prime}$ direct generalization of edge Laplacian $D^{T} D$.
- $L_{i}$ has useful connection to homology (Eckmann).


## Spectra

Denote the spectra of $L_{i}^{\prime}, L_{i}^{\prime \prime}$ and $L_{i}$ by $s_{i}^{\prime}, s_{i}^{\prime \prime}$ and $s_{i}^{\text {tot }}$ (sorted multisets of nonneg real numbers). Use $\approx$ for equality up to the number of trailing zeroes.
$■ s_{i}^{\text {tot }} \approx s_{i}^{\prime} \cup s_{i}^{\prime \prime} \approx s_{i}^{\prime} \cup s_{i-1}^{\prime}$, in fact any of $\left(s_{i}\right)_{i \geq 0},\left(s_{i}^{\prime}\right)_{i \geq 0}$, or $\left(s_{i}^{\prime \prime}\right)_{i \geq 0}$ determine the other two.

$$
\begin{aligned}
C_{1} & =\operatorname{im} \partial_{i+1} \oplus \operatorname{ker} L_{i} \oplus \operatorname{im} \partial i^{*} \\
\operatorname{im} \partial_{i+1} \oplus \operatorname{ker} L_{i} & =\operatorname{ker} \partial_{i} \\
\operatorname{ker} L_{i} & =H_{i}
\end{aligned}
$$

"Combinatorial Hodge theory"
■ So, number of zero eigenvalues of $L_{i}$ gives $i$ 'th Betti number. We will be interested in the non-zero eigenvalues.

## Shifted simplicial complexes

Ground set of $K$ is now $[n]=\{1,2, \ldots, n\}$, with natural total order.

- $K$ poset ideal in $2^{[n]}$ w.r.t. partial order inclusion.
- $K_{j}=\{F \in K| | F \mid=j\}$.


$$
\left\{a_{1}<a_{2}<\cdots<a_{j}\right\} \leq\left\{b_{1}<b_{2}<\cdots<b_{j}\right\} \Longleftrightarrow \forall i: a_{i} \leq b_{i}
$$

$\square \operatorname{deg}_{j}(K, i)=\#\left\{F \in K_{j} \mid i \in F\right\}$.
■ $d_{j}(K)=\left(\operatorname{deg}_{j}(K, 1), \operatorname{deg}_{j}(K, 2), \ldots, \operatorname{deg}_{j}(K, n)\right)$.
■ Non-increasing if $K$ shifted!

## Shifted complexes have integral Laplacian spectra

Theorem (Duval and Reiner)
If $K$ is a shifted simplicial complex then, for all $j$,

$$
s_{j}^{\prime} \approx d_{j}^{T}
$$

In particular, all eigenvalues of $L_{j}^{\prime}$ are non-negative integers.

## Conjecture (Duval and Reiner)

For any simplicial complex $K, s_{j}$ is majorized by $d^{T}$.
Duval also proved that shifted s.c. and independence complexes of matroids satisfy a certain spectral recursion: $s(K)$ can be expressed in terms of $s(K-e)$ (deletion), $s(K / e)$ (contraction or link), and $s(K-e, K / e)$ (simplicial pair). Open question: which other s.c. fulfill this?

## Questions

- Shifting?
- Extremality?

■ Reading off ring-theoretic properties of the indicator algebra $\mathbb{R}[K]$ (or the Stanley-Reisner ring of $K$ ) from the Laplacian spectrum of $K$ ?

## Multicomplexes

■ $X=\left\{x_{1}, \ldots, x_{n}\right\}$.
■ [ $X$ ] free abelian monoid, ordered by divisibility.

- $\mathbb{R}[X]$ polynomial ring.

■ $M \subset[X]$ multicomplex iff finite poset ideal.
$■ \mathbb{R} M$ vector space. Natural multiplication, iso with $\mathbb{R}[X] / I$, I artinian monomial ideal.

## Boundary operator

■ Björner and Vrećica:

$$
\begin{aligned}
\partial_{d} & : \mathbb{R}[X]_{d}
\end{aligned} \rightarrow \mathbb{R}[X]_{d-1} .
$$

with

$$
r_{j}= \begin{cases}0 & j \text { even } \\ 1 & j \text { odd }\end{cases}
$$

■ Restricts to $\partial_{d}: \mathbb{R} M_{d} \rightarrow \mathbb{R} M_{d-1}$.
■ On square-free monomials, $\partial$ is ordinary boundary operator.

## Boundary operator

- Any monomial $m$ can be uniquely written $m=p^{2} q$ with $q$ square-free.
- $\partial\left(p^{2} q\right)=p^{2} \partial(q)$.

■ Put $M^{p^{2}}=\left\{q \in M \mid p^{2} q \in M, q\right.$ square-free $\}$, a simplicial complex.
■ $\mathbb{R} M=\oplus_{p^{2} \in M} p^{2} \mathbb{R} M^{p^{2}}$.

- $\mathbb{R} M_{\ell}=\oplus_{p^{2} \in M, 2|p| \leq \ell} p^{2} \mathbb{R} M_{\ell-2|p|}^{p^{2}}$.

■ So,

$$
\begin{equation*}
H_{\ell}(M) \simeq \bigoplus_{p^{2} \in M, 2|p| \leq \ell} H_{\ell-2|p|}\left(M^{\left(p^{2}\right)}\right) \tag{1}
\end{equation*}
$$

## Laplacians on multicomplexes

■ Dual boundary operator defined by

$$
\begin{align*}
\partial_{d+1}^{*}(m) & =\sum_{j=1}^{n}(-1)^{a_{1}+\cdots+a_{j-1}} s_{j} x_{j} m,  \tag{2}\\
s_{j} & = \begin{cases}1 & \text { if } a_{j} \text { is even and } x_{j} m \in M \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

■ Define Laplacians as for simplicial complexes:

$$
\begin{align*}
L_{d}^{\prime} & =\partial_{d+1} \partial_{d+1}^{*} \\
L_{d}^{\prime \prime} & =\partial_{d}^{*} \partial_{d}  \tag{3}\\
L_{d} & =L_{d}^{\prime}+L_{d}^{\prime \prime}
\end{align*}
$$

## Laplacians on multicomplexes

■ We have that

$$
\begin{align*}
L^{\prime}\left(p^{2} q\right) & =p^{2} L^{\prime}(q) \\
L^{\prime \prime}\left(p^{2} q\right) & =p^{2} L^{\prime \prime}(q)  \tag{4}\\
L\left(p^{2} q\right) & =p^{2} L(q)
\end{align*}
$$

■ Define the spectra $\mathbf{s}_{i}^{\prime}, \mathbf{s}_{i}^{\prime \prime}, \mathbf{s}_{i}^{\text {tot }}$, of the selfadjoint, nonnegative definite operators $L_{i}^{\prime}, L_{i}^{\prime \prime}, L_{i}$ to be the multiset of their (real and and nonnegative) eigenvalues. We will identify such a multiset with its weakly decreasing rearrangement, which is a partition, and we will, unless otherwise stated, identify such partitions that differ only in the number of zero parts.

## Since everything splits...

Lemma

$$
\begin{align*}
\mathbf{s}_{i}^{\prime}(M, \partial) & =\sum_{p^{2} \in M, 2 \operatorname{deg}(p) \leq i} \mathbf{s}_{i-2 \operatorname{deg}(p)}^{\prime}\left(M^{p^{2}}, \partial\right) \\
\mathbf{s}_{i}^{\prime \prime}(M, \partial) & =\sum_{p^{2} \in M, 2 \operatorname{deg}(p) \leq i} \mathbf{s}_{i-2 \operatorname{deg}(p)}^{\prime \prime}\left(M^{p^{2}}, \partial\right) \\
\mathbf{s}_{i}^{\text {tot }}(M, \partial) & =\sum_{p^{2} \in M, 2 \operatorname{deg}(p) \leq i} \mathbf{s}_{i-2 \operatorname{deg}(p)}^{\text {tot }}\left(M^{p^{2}}, \partial\right)  \tag{5}\\
\mathbf{s}_{i}^{\prime \prime}(M, \partial) & =\mathbf{s}_{i-1}^{\prime}(M, \partial) \\
\mathbf{s}_{i}^{\text {tot }}(M, \partial) & =\mathbf{s}_{i}^{\prime}(M, \partial) \cup \mathbf{s}_{i}^{\prime \prime}(M, \partial) \\
\mathbf{s}_{i}^{\prime}(M, \partial) & =\mathbf{s}_{i}^{\text {tot }}(M, \partial)-\mathbf{s}_{i}^{\prime \prime}(M, \partial)
\end{align*}
$$

## Shifted multicomplexes

Definition
A subcomplex $N \subseteq M$ is shifted (relative its support) if

$$
\begin{equation*}
x_{j} m \in N, \quad i<j, \quad x_{i} \in N \quad \Longrightarrow \quad x_{i} m \in N \tag{6}
\end{equation*}
$$

Correspond to strongly stable artinian monomial ideals.
Lemma
If $M$ is shifted, then so are all $M_{p^{2}}$, with the induced total ordering on the vertices in their supports.

## Degree sequence

## Definition

Let $N \subseteq M$ be a multicomplex. The degree-sequence $\mathbf{d}_{k}$ is the sequence

$$
\begin{equation*}
\mathbf{d}_{k}(N)=\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right) \tag{7}
\end{equation*}
$$

where $d_{j}$ denotes the number of monomials in $N_{k}$ that are divisible by $x_{j}$.

## Lemma

If $N$ is shifted then $\mathbf{d}_{k}(N)$ is weakly decreasing, i.e. a partition.

## Duval and Reiner Reformulated

Theorem
Suppose that $M$ is shifted. Then

$$
\begin{equation*}
\mathbf{s}_{k}^{\prime}=\sum_{p^{2} \in M, 2 \operatorname{deg}(p) \leq k} \mathbf{d}_{k}^{T}\left(M_{p^{2}}\right) \tag{8}
\end{equation*}
$$

In particular, the eigenvalues of $L_{d}^{\prime}$ are non-negative integers.
Equivalently: let $\underline{b}$ be 1 if $b$ is odd, and zero otherwise, and let

$$
\begin{equation*}
\underline{\left(\alpha_{1}, \ldots, \alpha_{n}\right)}=\left(\underline{\alpha_{1}}, \ldots, \underline{\alpha_{n}}\right) \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathbf{s}_{k}^{\prime T}=\sum_{\mathbf{x}^{\alpha} \in M_{k}} \underline{\boldsymbol{\alpha}} \tag{10}
\end{equation*}
$$

## Example

Let

$$
M_{3}=\left\{x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}, x_{2}^{2} x_{3}, x_{1} x_{2} x_{3}, x_{1}^{2} x_{3}\right\} \subset\left[x_{1}, x_{2}, x_{3}\right]_{3},
$$

as below:

$$
\begin{aligned}
& \begin{array}{r}
x_{1}^{3} \\
\bullet
\end{array} \\
& x_{2}^{3} \bullet \bullet \bigcirc \bigcirc x_{3}^{3}
\end{aligned}
$$

Knowing $M_{3}$ lets us determine $s_{3}^{\prime}$ : the matrix of $d_{3}$, with respect to the basis of monomials of degree three and two ordered lexicographically, is

|  | $x_{1}^{3}$ | $x_{1}^{2} x_{2}$ | $x_{1}^{2} x_{3}$ | $x_{1} x_{2}^{2}$ | $x_{1} x_{2} x_{3}$ | $x_{2}^{3}$ | $x_{2}^{2} x_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}^{2}$ | 1 | -1 | -1 | 0 | 0 | 0 | 0 |
| $x_{1} x_{2}$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| $x_{1} x_{3}$ | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
| $x_{2}^{2}$ | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
| $x_{2} x_{3}$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| $x_{3}^{2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

and $P P^{*}$ has eigenvalues $3,3,3,0,0,0$. We have that

$$
\begin{aligned}
(3,3,3)^{T}= & (3,3,3) \\
= & (1,0,0)+(0,1,0)+(0,0,1)+(1,0,0)+(1,1,1)+ \\
& +(0,1,0)+(0,0,1)
\end{aligned}
$$

## Questions

■ Does Laplacian spectra work well with shifting?

- Spectral recursion?

■ Are ring-theoretical properties of $\mathbb{R} M$ detectable from the Laplacian spectrum?

- Inequalities (majorization)?


## $[N]$ as a multicomplex

■ The multiplicative monoid $\mathbb{N}_{+}$is free abelian on the set of primes.

- Any finite poset ideal in $\mathbb{N}_{+}$(divisibility) is a multicomplex on a finite set of primes.
■ In particular, $[N]$ is divisor-closed, so a multicomplex.
- For instance, [6] $=\left\{2^{0} 3^{0} 5^{0}, 2^{1} 3^{0} 5^{0}, 2^{2} 3^{0} 5^{0}, 2^{0} 3^{0} 5^{1}, 2^{1} 3^{1} 5^{0}\right\}$ is the multicomplex $\{(0,0,0),(1,0,0),(2,0,0),(0,0,1),(1,1,0)\}$.
- Call the associated multicomplex ring $\Gamma_{N}$. Then $\Gamma_{n}$ can be realized as functions $f:[N] \rightarrow \mathbb{R}$, with multiplication modified Cauchy convolution

$$
f * g(m)= \begin{cases}\sum_{k \mid m} f(k) g(m / k) & m \leq n \\ 0 & m>N\end{cases}
$$

■ It is also a quotient $C[x] / I_{N}, I_{N}$ an artinian monomial ideal.
■ Letting $N \rightarrow \infty$, we get $\Gamma=\varliminf_{\leftrightarrows} \Gamma_{N}$, the set of all arithmetical functions $f: \mathbb{N}_{+} \rightarrow \mathbb{R}$ with Cauchy convolution

$$
f * g(m)=\sum_{k \mid m} f(k) g(m / k)
$$

This is the UFD $R\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ (Cashwell-Everett).

## Laplacian eigenvalues

■ So, $\Gamma_{N}$ is a natural truncation of a ring with number theoretic significance.

■ Bi-graded Hilbert series easy to interpret.
■ Betti numbers trickier (Eliahou-Kervaire), yield some interesting problems in analytic number theory (no new results).
■ What about Laplacian eigenvalues?

## Exact formulae

■ Lucky us! $[N$ ] is a shifted multicomplex!
■ If $m=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ then $\log (m)=\left(a_{1}, a_{2}, \cdots\right)$.

- $\operatorname{sfp}(m)$ is square-free part.
- Then

$$
\mathbf{s}_{k}^{\prime T}=\sum_{\substack{1 \leq \ell \leq N \\ \Omega(\ell)=k}} \log (\operatorname{sfp}(\ell))
$$

■ Put

$$
\begin{aligned}
\mathbf{s}_{k}^{\prime}(N)^{T} & =\left(t_{k}^{1}(N), t_{k}^{2}(N), \ldots\right) \\
\mathbf{s}_{k}^{\prime}(N) & =\left(s_{k}^{1}(N), s_{k}^{2}(N), \ldots\right)
\end{aligned}
$$

## Exact formulae

■ Then

$$
\begin{aligned}
t_{k}^{i}(N) & =\sum_{\substack{1<n \leq N \\
\Omega(n)=k \\
p_{i} \mid \operatorname{sfp}(n)}} 1 \\
s_{k}^{\prime}(N) & =\sum_{\left\{i \mid t_{k}^{i}(N) \geq j\right\}} 1 \\
& =\#\left\{\ell: \#\left\{1<n \leq N: \Omega(n)=k, p_{\ell} \mid \operatorname{sfp}(n)\right\} \geq j\right\}
\end{aligned}
$$

- $s_{1}^{1}(N)$ is the number of primes $\leq N$.


## What about $s_{2}^{j}(N)$ ?

■ Let $Y_{2}(N)$ be square matrix, indexed by primes $\left.\leq N, a, b\right)$ entry is 1 if $p_{a} p_{b} \leq N, a \neq b, 0$ otherwise.
■ Push the ones to the left edge to get $U_{2}(N)$, partion-shaped.
■ This partition is $t_{2}(N)$, conjugate is $s_{2}(N)$.

## Example: [50]

$$
\left[\begin{array}{lllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Table: $Y_{2}(50)$ and $U_{2}(50) . \mathbf{t}_{2}=(8,5,3,3,2,2,1,1,1)$,
$\mathbf{s}_{2}=(9,6,4,2,2,1,1,1)$.

Easier than composing boundary maps, then calculate characteristic polynomials, then finding roots...

## Asymptotics

Pedestrian methods yield that

$$
s_{2}^{i}(N) \sim \frac{N / p_{i}}{\mathcal{W}\left(N / p_{i}\right)}
$$

where $\mathcal{W}$ is the Lambert $W$-function (solution to functional equation $z=\mathcal{W}(z) e^{\mathcal{W}(z)}$.

