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Graph Laplacian
Discrete analogs of div and grad

Let G be an oriented graph. The discrete analog of a vector field is
a function defined on the edges, and the divergence operator maps
such functions to functions on the vertices by

D(f )(v) =
∑
a

e−→v

f (e)−
∑
v

e−→b

f (e).
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Graph Laplacian

W.r.t. the natural basis, this operator has matrix

D =

a b c d f g
1 −1 0 −1 0 0 1
2 1 −1 0 0 0 0
3 0 0 1 1 0 0
4 0 1 0 −1 1 0
5 0 0 0 0 −1 −1



Graph Laplacian

The discrete analog of the gradient is the operator DT which maps
functions defined on vertices to functions defined on edges:

DT (g)(e) = g(b)− g(a) a
e−→ b

3

-4

7

5

2

-7

49

-5

2

1

3



Graph Laplacian

W.r.t. the natural basis, this operator has matrix

DT =



a b c d f g
1 −1 0 −1 0 0 1
2 1 −1 0 0 0 0
3 0 0 1 1 0 0
4 0 1 0 −1 1 0
5 0 0 0 0 −1 −1



T



Graph Laplacian

The discrete analog of the laplacian operator “div” compose
“grad” is then

Q = DDT

which is an operator that maps functions defined on vertices to
functions defined on vertices.
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The matrix of Q is

3 −1 −1 0 −1

−1 2 0 −1 0

−1 0 3 −1 −1

0 −1 −1 3 −1

−1 0 −1 −1 3





Facts about graph Laplacian Q

Suppose G has n vertices, c components, Q = DDT , ∆ valency, A
adjacency (of undirected graph, so symmetric).

Symmetric, positive definite.

Does not depend on the orientation! Depends on ordering of
vertices, but only up to permutation similarity.

Hence eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ1 ≥ 0.

In fact, λn = 0 and λ1 ≤ n.

Q = ∆− A,

rkQ = n − c .

λn−1 > 0 iff c = 1.

Eigenvalues of complement: λi (G ) = n − λn−i+2.

If G k-regular then A has eigenvalues θi = k − λi .

As a quadratic form,

xTQx =
∑
u

e−→v

(xu − xv )2.



Spanning trees

Theorem
Let u be any vertex, and let Q[u] denote the matrix obtained from
Q by removing the u’th row and column. Then the number of
spanning trees in G is

det Q[u] =
1

n
λ1λ2 · · ·λn−1.



Majorization of the spectrum

S(G ) = (λ1, λ2, . . . , λn) non-increasing.

D(G ) = (d1, d2, . . . , dn) degree-sequence, non-increasing.

Theorem
S(G ) majorizes D(G ), i.e.,

∀k :
k∑

j=1

λj ≥
k∑

j=1

dj .

In particular, λ1 ≥ d1.



Majorization of the spectrum

Furthermore:

Theorem
D(G )T (conjugate partition) majorizes D(G ).

Conjecture

D(G )T (conjugate partition) majorizes S(G ).



Integrality of Laplacian spectra

Important question: when are all eigenvalues of Q integers?

Iff same holds for complement G .

A tree has integral Laplacian spectrum iff it is a star,
G = Ki ,n−1.
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1 0 −1 0 0 0

0 1 −1 0 0 0

−1 −1 3 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 1 0

0 0 0 −1 0 1


S(G ) = (5/2 + 1/2

√
17, 3, 1, 1, 5/2− 1/2

√
17, 0)



Simplicial complexes

K simplicial complex.

Ci = Ci (K , R) chains.

Differential

∂i : Ci 7→ Ci−1

[v0, . . . , vi ] 7→
∑

j

(−1)j [v0, . . . , v̂j , . . . , vi ]

Homology Hi = ker ∂i
im ∂i+1

Choose inner product, dual ∂∗i : Ci → Ci+1.

Define Laplacians L′i = ∂i+1∂
∗
i+1, L′′i = ∂∗i ∂i , Li = L′i + L′′i .

(Duval and Reiner).

L′i direct generalization of graph Laplacian Q = DDT .
(Graphs are 1-dim s.c.)

L′′i direct generalization of edge Laplacian DTD.

Li has useful connection to homology (Eckmann).



Spectra

Denote the spectra of L′i , L′′i and Li by s ′i , s ′′i and stot
i (sorted

multisets of nonneg real numbers). Use ≈ for equality up to the
number of trailing zeroes.

stot
i ≈ s ′i ∪ s ′′i ≈ s ′i ∪ s ′i−1, in fact any of (si )i≥0, (s ′i )i≥0, or

(s ′′i )i≥0 determine the other two.

C1 = im ∂i+1 ⊕ ker Li ⊕ im ∂i∗

im ∂i+1 ⊕ ker Li = ker ∂i

ker Li = Hi

“Combinatorial Hodge theory”

So, number of zero eigenvalues of Li gives i ’th Betti number.
We will be interested in the non-zero eigenvalues.



Shifted simplicial complexes

Ground set of K is now [n] = {1, 2, . . . , n}, with natural total
order.

K poset ideal in 2[n] w.r.t. partial order inclusion.

Kj = {F ∈ K |F | = j }.
K is shifted if each Kj poset ideal in

([n]
j

)
w.r.t.

{a1 < a2 < · · · < aj} ≤ {b1 < b2 < · · · < bj} ⇐⇒ ∀i : ai ≤ bi

degj(K , i) = # {F ∈ Kj i ∈ F }.
dj(K ) = (degj(K , 1), degj(K , 2), . . . , degj(K , n)).

Non-increasing if K shifted!



Shifted complexes have integral
Laplacian spectra

Theorem (Duval and Reiner)

If K is a shifted simplicial complex then, for all j ,

s ′j ≈ dT
j

In particular, all eigenvalues of L′j are non-negative integers.

Conjecture (Duval and Reiner)

For any simplicial complex K, sj is majorized by dT .

Duval also proved that shifted s.c. and independence complexes of
matroids satisfy a certain spectral recursion: s(K ) can be
expressed in terms of s(K − e) (deletion), s(K/e) (contraction or
link), and s(K − e,K/e) (simplicial pair). Open question: which
other s.c. fulfill this?



Questions

Shifting?

Extremality?

Reading off ring-theoretic properties of the indicator algebra
R[K ] (or the Stanley-Reisner ring of K ) from the Laplacian
spectrum of K?



Multicomplexes

X = {x1, . . . , xn}.
[X ] free abelian monoid, ordered by divisibility.

R[X ] polynomial ring.

M ⊂ [X ] multicomplex iff finite poset ideal.

RM vector space. Natural multiplication, iso with R[X ]/I , I
artinian monomial ideal.



Boundary operator

Björner and Vrećica:

∂d : R[X ]d → R[X ]d−1

xa1
1 · · · x

an
n 7→

n∑
j=1

(−1)a1+a2+···+aj−1rj
xa1
1 · · · xan

n

xj

with

rj =

{
0 j even

1 j odd

Restricts to ∂d : RMd → RMd−1.

On square-free monomials, ∂ is ordinary boundary operator.



Boundary operator

Any monomial m can be uniquely written m = p2q with q
square-free.

∂(p2q) = p2∂(q).

Put Mp2
=

{
q ∈ M p2q ∈ M, q square-free

}
, a simplicial

complex.

RM = ⊕p2∈Mp2RMp2
.

RM` = ⊕p2∈M,2|p|≤`p
2RMp2

`−2|p|.

So,
H`(M) '

⊕
p2∈M, 2|p|≤`

H`−2|p|(M
(p2)) (1)



Laplacians on multicomplexes

Dual boundary operator defined by

∂∗d+1(m) =
n∑

j=1

(−1)a1+···+aj−1sjxjm,

sj =

{
1 if aj is even and xjm ∈ M

0 otherwise

(2)

Define Laplacians as for simplicial complexes:

L′d = ∂d+1∂
∗
d+1

L′′d = ∂∗d∂d

Ld = L′d + L′′d

(3)



Laplacians on multicomplexes

We have that

L′(p2q) = p2L′(q)

L′′(p2q) = p2L′′(q)

L(p2q) = p2L(q)

(4)

Define the spectra s′i , s′′i , stot
i , of the selfadjoint, nonnegative

definite operators L′i , L′′i , Li to be the multiset of their (real
and and nonnegative) eigenvalues. We will identify such a
multiset with its weakly decreasing rearrangement, which is a
partition, and we will, unless otherwise stated, identify such
partitions that differ only in the number of zero parts.



Since everything splits...

Lemma

s
′
i (M, ∂) =

∑
p2∈M, 2 deg(p)≤i

s
′

i−2 deg(p)(M
p2

, ∂)

s
′′
i (M, ∂) =

∑
p2∈M, 2 deg(p)≤i

s
′′

i−2 deg(p)(M
p2

, ∂)

stot
i (M, ∂) =

∑
p2∈M, 2 deg(p)≤i

stot
i−2 deg(p)(M

p2
, ∂)

s
′′
i (M, ∂) = s

′
i−1(M, ∂)

stot
i (M, ∂) = s

′
i (M, ∂) ∪ s

′′
i (M, ∂)

s
′
i (M, ∂) = stot

i (M, ∂)− s
′′
i (M, ∂)

(5)



Shifted multicomplexes

Definition
A subcomplex N ⊆ M is shifted (relative its support) if

xjm ∈ N, i < j , xi ∈ N =⇒ xim ∈ N (6)

Correspond to strongly stable artinian monomial ideals.

Lemma
If M is shifted, then so are all Mp2 , with the induced total ordering
on the vertices in their supports.



Degree sequence

Definition
Let N ⊆ M be a multicomplex. The degree-sequence dk is the
sequence

dk(N) = (d1, d2, d3, . . . , dn) (7)

where dj denotes the number of monomials in Nk that are divisible
by xj .

Lemma
If N is shifted then dk(N) is weakly decreasing, i.e. a partition.



Duval and Reiner Reformulated

Theorem
Suppose that M is shifted. Then

s
′
k =

∑
p2∈M, 2 deg(p)≤k

dT
k (Mp2) (8)

In particular, the eigenvalues of L′d are non-negative integers.
Equivalently: let b be 1 if b is odd, and zero otherwise, and let

(α1, . . . , αn) = (α1, . . . , αn) (9)

Then
s
′
k

T
=

∑
xα∈Mk

α (10)



Example

Let

M3 =
{
x3
1 , x2

1x2, x1x
2
2 , x3

2 , x2
2x3, x1x2x3, x

2
1x3

}
⊂ [x1, x2, x3]3,

as below:

f f f f
f f f

f f
f

x3
2 x3

3

x3
1

v
v

v
v

v
v

v



Knowing M3 lets us determine s ′3: the matrix of d3, with respect to
the basis of monomials of degree three and two ordered
lexicographically, is

x3
1 x2

1x2 x2
1x3 x1x

2
2 x1x2x3 x3

2 x2
2x3

x2
1 1 -1 -1 0 0 0 0

x1x2 0 0 0 0 1 0 0
x1x3 0 0 0 0 -1 0 0
x2
2 0 0 0 1 0 1 -1

x2x3 0 0 0 0 1 0 0
x2
3 0 0 0 0 0 0 0

and PP∗ has eigenvalues 3, 3, 3, 0, 0, 0. We have that

(3, 3, 3)T = (3, 3, 3)

= (1, 0, 0) + (0, 1, 0) + (0, 0, 1) + (1, 0, 0) + (1, 1, 1)+

+ (0, 1, 0) + (0, 0, 1).



Questions

Does Laplacian spectra work well with shifting?

Spectral recursion?

Are ring-theoretical properties of RM detectable from the
Laplacian spectrum?

Inequalities (majorization)?



[N] as a multicomplex

The multiplicative monoid N+ is free abelian on the set of
primes.

Any finite poset ideal in N+ (divisibility) is a multicomplex on
a finite set of primes.

In particular, [N] is divisor-closed, so a multicomplex.

For instance, [6] =
{
203050, 213050, 223050, 203051, 213150

}
is

the multicomplex
{(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 0, 1), (1, 1, 0)}.



Γn

Call the associated multicomplex ring ΓN . Then Γn can be
realized as functions f : [N]→ R, with multiplication modified
Cauchy convolution

f ∗ g(m) =

{∑
k|m f (k)g(m/k) m ≤ n

0 m > N

It is also a quotient C [x ]/IN , IN an artinian monomial ideal.

Letting N →∞, we get Γ = lim←− ΓN , the set of all arithmetical
functions f : N+ → R with Cauchy convolution

f ∗ g(m) =
∑
k|m

f (k)g(m/k)

This is the UFD R[[x1, x2, x3, . . . ]] (Cashwell-Everett).



Laplacian eigenvalues

So, ΓN is a natural truncation of a ring with number theoretic
significance.

Bi-graded Hilbert series easy to interpret.

Betti numbers trickier (Eliahou-Kervaire), yield some
interesting problems in analytic number theory (no new
results).

What about Laplacian eigenvalues?



Exact formulae

Lucky us! [N] is a shifted multicomplex!

If m = pa1
1 · · · par

r then log(m) = (a1, a2, · · · ).
sfp(m) is square-free part.

Then
s
′
k

T
=

∑
1≤`≤N
Ω(`)=k

log(sfp(`))

Put

s
′
k(N)T = (t1

k (N), t2
k (N), . . . )

s
′
k(N) = (s1

k (N), s2
k (N), . . . )



Exact formulae

Then

t i
k(N) =

∑
1<n≤N
Ω(n)=k
pi |sfp(n)

1

s j
k(N) =

∑
{ i t i

k (N)≥j }
1

= # { ` : # { 1 < n ≤ N : Ω(n) = k, p` |sfp(n) } ≥ j }

s1
1 (N) is the number of primes ≤ N.



What about s i
2(N)?

Let Y2(N) be square matrix, indexed by primes ≤ N, a, b)
entry is 1 if papb ≤ N, a 6= b, 0 otherwise.

Push the ones to the left edge to get U2(N), partion-shaped.

This partition is t2(N), conjugate is s2(N).



Example: [50]



0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0 0
1 1 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0





1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


Table: Y2(50) and U2(50). t2 = (8, 5, 3, 3, 2, 2, 1, 1, 1),
s2 = (9, 6, 4, 2, 2, 1, 1, 1).

Easier than composing boundary maps, then calculate
characteristic polynomials, then finding roots...



Asymptotics

Pedestrian methods yield that

s i
2(N) ∼ N/pi

W(N/pi )

where W is the Lambert W-function (solution to functional
equation z =W(z)eW(z).


