Term-orders and posets of compositions

Jan Snellman ${ }^{12}$
${ }^{1}$ Department of Mathematics
Stockholm University
${ }^{2}$ Department of Mathematics
University of Linköping

Mittag-Leffler, Apr 7, 2005

Slides at www.math.su.se/~jans/

Outline

1 Partially ordered monoids
2 Term orders
3 Structure of commutative term orders
4 Non-commutative term orders, Definition and Classification

5 Intersection of standard non-commutative term orders

- Raising operators
- Edge labeling
- Coding as compositions
- Multiranking

6 Enumeration of saturated chains

- Enumeration of chains of fixed width
- Labeled enumeration, fixed width
- Enumeration of chains of height at most two

Free monoids

Commutative, non-commutative, square-free
$X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}, X_{n}=\left\{1, x_{2}, \ldots, x_{n}\right\}$.
$X^{*}=$ free monoid on $X, X_{n}^{*}=$ free monoid on X_{n}.
$[X]=$ free abelian monoid on $X,\left[X_{n}\right]=$ free abelian monoid on X_{n}.
$\Delta(X) \subset[X]$ consists of square-free monomials, modified product $u \times v=u v$ if square-free, 0 otherwise. $\Delta\left(X_{n}\right) \subset \Delta(X)$ restriction. M will denote any of these monoids.

Partially ordered free monoids

D divisibility order on $M=X^{*}$ or on $M=X_{n}^{*}$.

$$
u \leq_{D} v \Longleftrightarrow \exists w, t: v=t u w
$$

D fulfills:
(i) $\forall v \in M \backslash\{1\}: 1 \leq v$,
(ii) $\forall u, v, w, t \in M: u \leq v \Longrightarrow t u w \leq t v w$,

So $\left(X^{*}, D\right)$ and $\left(X^{*}, D\right)$ are partially ordered monoids, pomonoids.

Partially ordered free monoids

D divisibility order on $M=[X]$ or on $M=\left[X_{n}\right]$.

$$
u \leq_{D} v \Longleftrightarrow \exists w: v=u w
$$

D fulfills:
(i) $\forall v \in M \backslash\{1\}: 1 \leq v$,
(ii) $\forall u, v, w \in M: u \leq v \Longrightarrow u w \leq v w$,

So $([X], D)$ and $\left(\left[X_{n}\right], D\right)$ are partially ordered monoids.

Partially ordered free monoids

Free commutative-with-zero

D divisibility order on $M=\Delta(X)$ or on $M=\Delta\left(X_{n}\right)$.

$$
u \leq_{D} v \Longleftrightarrow \exists w: v=u w
$$

D fulfills:
(i) $\forall v \in M \backslash\{1\}: 1 \leq v$,
(ii) $M=\Delta(X): \quad \forall u, v, w \in M:(u \leq v) \wedge u v \neq 0) \wedge(u w \neq$ $0) \Longrightarrow u w \leq v w$.
So $(\Delta(X), D)$ and $\left(\Delta\left(X_{n}\right), D\right)$ are partially ordered monoids.

Any multiplicative total extension of D, i.e. a total order \succeq on M satisfying these conditions, is called a term order. By Higman's lemma, they are well-orders for finitely many variables, i.e. there are no infinite descending chains

$$
u_{1} \succ u_{2} \succ u_{3} \succ u_{4} \succ \cdots
$$

The term order \succeq is standard if

$$
x_{1} \prec x_{2} \prec x_{3} \prec x_{4} \prec \cdots
$$

Standard term orders are well-orders, even for infinitely many variables.

Term orders on $\left[X_{n}\right]$

Any multiplicative partial order on $\left[X_{n}\right] \simeq \mathbb{N}^{n}$ extends uniquely to the difference group \mathbb{Z}^{n} by

$$
\mathbf{x}^{\boldsymbol{\alpha}} \leq \mathbf{x}^{\boldsymbol{\beta}} \Longleftrightarrow \boldsymbol{\alpha} \leq \boldsymbol{\beta} \Longleftrightarrow \mathbf{0} \leq \boldsymbol{\beta}-\boldsymbol{\alpha}
$$

Furthermore, it extends uniquely to \mathbb{Q}^{n}, and then to \mathbb{R}^{n}.
Conversely, any multiplicative partial order on \mathbb{R}^{n} restricts to a multiplicative partial order on \mathbb{Z}^{n}.
A non-zero weight vector $\mathbf{v} \in \mathbb{R}^{n}$ yields a multiplicative partial order on \mathbb{R}^{n} by

$$
\boldsymbol{\alpha} \geq \boldsymbol{\beta} \Longleftrightarrow\langle\boldsymbol{\alpha}, \mathbf{v}\rangle \geq\langle\boldsymbol{\beta}, \mathbf{v}\rangle \Longleftrightarrow\langle\boldsymbol{\alpha}-\boldsymbol{\beta}, \mathbf{v}\rangle \geq 0
$$

Term orders on [X_{n}]

Refining weight vector orders

If $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}} \in \mathbb{R}^{n}$ are non-zero weight vectors, they define a multiplicative partial order by $\boldsymbol{\alpha} \geq \mathbf{0}$ iff

- either all $\left\langle\boldsymbol{\alpha}, \mathbf{v}_{\mathbf{i}}\right\rangle$ are zero, or
- the first non-zero such number is positive.

The multiplicative partial order induced by $\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{n}}$ is a term order, called the lexicographic term order. We have that

$$
x_{1} \leq_{\operatorname{lex}} x_{2} \leq_{\operatorname{lex}} \cdots \leq_{\operatorname{lex}} x_{n},
$$

so it is not standard; however, by permuting the variables we get a a standard lex order.
Refining the multiplicative partial order induced by $\mathbf{e}_{\mathbf{1}}+\cdots+\mathbf{e}_{\mathbf{n}}$ by $\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{n}}$ we get the total degree, then lexicographic term order.

Term orders on $\left[X_{n}\right]$

Classification

Theorem (Robbiano et al)

Any term order \succ on $\left[X_{n}\right]$ is given by a tuple of at most n weight vectors. In other words, there is a real n times n matrix A such that

$$
\mathbf{x}^{\boldsymbol{\alpha}} \succ \mathbf{x}^{\boldsymbol{\beta}} \Longleftrightarrow A \boldsymbol{\alpha} \geq_{\operatorname{lex}} A \boldsymbol{\beta}
$$

The possible order types of \succ are $\omega, \omega^{2}, \ldots, \omega^{n}$. The term orders with order type ω^{n} are precisely the n ! lexicographic orders.

Total degree, then lex, with $x_{1}<x_{2}$, has order type ω.

Lex, with $x_{1}<x_{2}$, has order type ω^{2}.

Intersection of standard term orders

$$
M=[X] \text { or } M=\left[X_{n}\right]
$$

$$
\begin{aligned}
& D=\bigcap_{\ell \text { term order on } M} \ell \\
& \mathcal{Y}=\bigcap_{\ell \text { standard term order on } M} \ell
\end{aligned}
$$

D on [X_{2}]:

$$
\begin{array}{llll}
x_{1}^{2} & x_{1} x_{2} & & x_{2}^{2} \\
x_{1} & & x_{2}
\end{array}
$$

1

Impose $x_{1}<x_{2}$, and all consequences, e.g. $x_{1}^{2}<x_{1} x_{2}$. Get:

$$
\begin{array}{ccc}
& x_{1} x_{2} & x_{1}^{3} \\
x_{2} & & x_{1}^{2} \\
& & \\
& x_{1} & \\
1 & & \\
1 & & \\
& &
\end{array}
$$

Covering rels of \mathcal{Y}

Partially defined operators on $[X]$ and on $\left[X_{n}\right]$

$$
m=x_{1}^{a_{1}} \cdots x_{s}^{a_{s}} .
$$

$L(m)=x_{1} m$, defined everywhere.
$U_{j}(m)=\frac{x_{j+1}}{x_{j}} m$, defined when $a_{j}>0$ (and $j<n$).
The covering relations of \mathcal{Y} are precisely $m \lessdot L(m)$ and $m \lessdot U_{j}(m)$.

Strongly stable (Borel) ideals

Filters w.r.t. $D \Longleftrightarrow$
Filters w.r.t. $\mathcal{Y} \Longleftrightarrow$ strongly stable monomial ideals

Strongly stable ideals are fixed under the action of the Borel subgroup of upper-triangular matrices. Important example: generic initial ideals.

Borelfixed subsets

Restrict \mathcal{Y} to $\left[X_{n}\right]_{d}$, monomials of total degree d.

Filters w.r.t. $\mathcal{Y} \quad \Longleftrightarrow \quad$ Borel-fixed subsets.
Important to know the number of such subsets of given cardinality (study of minimal free resolutions, algebraic geometry).

The Hasse diagram for the strongly stable partial order for $n=2$.

The Hasse diagram for the strongly stable partial order for $n=3$.

$$
x_{1}^{d}
$$

$$
x_{2}^{d}
$$

Bijection with Young's lattice

$\mathbf{f}_{\mathbf{j}}=\mathbf{e}_{\mathbf{1}}+\cdots+\mathbf{e}_{\mathbf{j}}$. Order-isomorphism

$$
\begin{aligned}
& ([X], \mathcal{Y}) \xrightarrow{\log } \mathbb{N}^{\omega} \rightarrow Y \\
& x_{1}^{a_{1}} \cdots x_{s}^{a_{s}} \mapsto\left(a_{1}, \ldots, a_{s}\right) \mapsto a_{1} \mathbf{e}_{1}+\cdots+a_{s} \mathbf{e}_{s}
\end{aligned}
$$

Pictorial representation

4
$x_{1}^{2} x_{2}^{3} x_{4}$

\mathcal{Y} is Young

$$
\begin{aligned}
([X], \mathcal{Y}) & \simeq Y \text { Young's lattice } \\
\left(\left[X_{n}\right], \mathcal{Y}\right) & \simeq \text { At most } n \text { rows } \\
\left(\left[X_{n}\right]_{d}, \mathcal{Y}\right) & \simeq \text { At most } n \text { rows, exactly } d \text { columns } \\
& \simeq \text { At most } n \text { rows, at most } d-1 \text { columns }
\end{aligned}
$$

$\left.\left[X_{n}\right]_{d}, \mathcal{Y}\right)$ has following properties:

- Sperner
- Rank-symmetric
- Rank-unimodular
- Rank numbers given by coeffs of q-binomial polynomials

q-binomial ranks

$$
\frac{\left(1-q^{6}\right)\left(1-q^{7}\right)}{(1-q)\left(1-q^{2}\right)}=q^{10}+q^{9}+2 q^{8}+2 q^{7}+3 q^{6}+3 q^{5}+
$$

$$
3 q^{4}+2 q^{3}+2 q^{2}+q+1
$$

Filters in $\left(\left[X_{3}\right]_{d}, \mathcal{Y}\right)$

Following iso:
1 Filters in $\left(\left[X_{3}\right]_{d}, \mathcal{Y}\right)$
2 Partitions into distinct parts $\leq d+1$,
$3\left(\Delta\left(\left[X_{3}\right]\right), \mathcal{Y}\right), \mathcal{Y}$ restricted to square-free monomials.
x_{3}^{3}
$x_{1} x_{2} x_{3}$
$x_{2} X_{3}$

Non-commutative term orders

Definition

\leq is a standard term order on X^{*} (or on X_{n}^{*}) iff
$\boldsymbol{1} \leq$ is a total order on X^{*}
$21<x_{1}<x_{2}<x_{3}<\cdots$,
3 $u \leq v \Longrightarrow$ sut $\leq s v t$.
Higman's lemma $\Longrightarrow \leq$ well-order. ©Skip classification

Non-commutative term orders

Classification

X_{1}^{*} : only $1<x_{1}<x_{1}^{2}<x_{1}^{3}<\cdots$, order type ω.
X_{2}^{*} : Possible order types are

- ω, e.g. total degree, then lex.
- ω^{2}, e.g. lex.
- ω^{ω}, only 2 such orderings!
X_{n}^{*} : maximal order type $\omega^{\omega^{n-1}}$.
X^{*} : maximal order type $\omega^{\omega^{\omega}}$.
- Skip Kachinuki ordering

Non-commutative term orders

Recursiv term orders, Kachinuki
$u, v \in X_{2}^{*}, u$ has a occuring x_{2}, v has b occuring x_{2}. Write $u=y u^{\prime}, \quad v=y v^{\prime}, \quad u, v$ has no common non-empty prefix.

Kachinuki ordering

$u>v$ iff either
$1 a>b$, or
2 a $=b$ and $u \neq v$ and $v^{\prime}=1$ (empty string) or $v^{\prime}=x_{2} z$, $z \in X_{2}^{*}$.

The reversal of this is the only other standard term order of order type ω^{ω}.

Intersection of standard term orders

$$
M=X^{*} \text { or } M=X_{n}^{*}
$$

$$
\begin{aligned}
& D=\bigcap_{\ell \text { term order on } M} \ell \\
& \mathfrak{N}=\bigcap_{\ell \text { standard term order on } M} \ell
\end{aligned}
$$

D on X_{2}^{*} :

$$
\begin{array}{cccc}
x_{1}^{2} & & x_{1} x_{2} & x_{2} x_{1}
\end{array} x_{2}^{2}
$$

1
Impose $x_{1}<x_{2}$, and all consequences, e.g. $x_{1}^{2}<x_{1} x_{2}$. Get:

Intersection of standard term orders

Intersection of standard term orders

Partially defined operators on X^{*} and on X_{n}^{*}

$m=x_{a_{1}} \cdots x_{a_{s}}$.
$L(m)=x_{1} m$, defined everywhere. $R(m)=m x_{1}$, defined everywhere.
$U_{j}(m)=x_{a_{1}} \cdots x_{a_{j-1}} x_{a_{j}+1} x_{a_{j+1}} \cdots x_{a_{s}}$, defined when $j \leq s$ (and $\left.a_{j}<n\right)$.

The covering relations of \mathfrak{N} are precisely $m \lessdot L(m)$ and $m \lessdot R(m)$ and $m \lessdot U_{j}(m)$.

The poset \mathfrak{N}

Partial semigroup action \mathfrak{N}

$\left\langle L, R, U_{1}, U_{2}, \ldots\right\rangle$ free (non-comm) semigroup.
Partial left action on \mathfrak{N} by

$$
\begin{align*}
W R \cdot m & =W \cdot R(m) \\
W L \cdot m & =W \cdot L(m) \tag{1}\\
W U_{j} \cdot m & =W \cdot U_{j}(m)
\end{align*}
$$

If $m=x_{1}^{k}$ then $L . m=R . m$, otherwise action by different letters give different result. Convention: R not allowed to act on x_{1}^{k}. Can label edges in Hasse diag according to type of covering rel, get:

L

Order isomorphism with poset of compositions

Compositions ordered by inclusion of diagrams

Definition

An r-multiranking on a poset P is a map $\phi: P \rightarrow \mathbb{N}^{r}$ such that

$$
u \lessdot v \Longrightarrow \phi(u) \lessdot \phi(v)
$$

The Young lattice is ω-multiranked, and so is \mathfrak{N}.

Multirank of
 $=(4,2,2,2,1,1) \in$ Young. Rank is the number of boxes, i.e. 12.

$$
\begin{aligned}
\text { Multirank gf } & =\left(1-\sum_{i=1}^{\infty} \prod_{j=1}^{i} t_{j}\right)^{-1} \\
\operatorname{gf} & =\frac{1-t}{1-2 t}
\end{aligned}
$$

Enumeration of saturated chains in \mathfrak{N}

 d'après Bergeron, Bousquet-Mélou, et Dulucq$\alpha \leq \beta$ in \mathfrak{N}.
$\gamma=\left(p_{0}, p_{1}, \ldots, p_{s}\right)$ saturated chain from α to β, of length s :

$$
\alpha=p_{0} \lessdot p_{1} \lessdot p_{1} \lessdot \cdots \lessdot p_{s}=\beta
$$

Example: $\gamma=(121,1121,1122,2122,2222,2322)$.
Correspond to tableau on β, coding in which order boxes are

Defines width and height of γ.

Enumeration of saturated chains in \mathfrak{N}

Chains with fixed width

$$
\begin{aligned}
& \gamma=\left(\alpha=p_{0}, \ldots, p_{n}=\beta\right), \text { with } \beta=\left(a_{1}, \ldots, a_{k}\right) . \\
& v(\gamma)=v(\beta)=t_{1}^{a_{1}} \cdots t_{k}^{a_{k}}
\end{aligned}
$$

$$
f_{k}^{\alpha}=\sum_{\gamma \text { width } k, \text { from } \alpha} v(\gamma) .
$$

Explicit description of cover rel in terms of L, R, U_{j} gives recurrence relation for f_{k}^{α}.

Definition

We say that the compositions $11 . . .1$ are all-one, "a.o".
We define $\Lambda(h)$ to be the result of performing the substitutions
$t_{i} \mapsto t_{i+1}$ on h.

Enumeration of saturated chains in \mathfrak{N}

Chains with fixed width

Theorem

Let $\alpha \in \mathfrak{N}$ have width r. Then

$$
\begin{align*}
f_{k}^{\alpha} & = \begin{cases}0 & \text { if } k<r \\
A+v(\alpha) & \text { if } k=r \\
A+B+C & \text { if } k>r, \alpha \text { not a.o } \\
A+B+C-t_{1} t_{2} \cdots t_{k} & \text { if } k>r, \alpha \text { a.o }\end{cases} \tag{2}\\
A & =\left(t_{1}+t_{2}+\cdots+t_{k}\right) f_{k}^{\alpha} \\
B & =t_{1} \Lambda\left(f_{k-1}^{\alpha}\right) \\
C & =t_{k} f_{k-1}^{\alpha}
\end{align*}
$$

Enumeration of saturated chains in \mathfrak{N}

Chains with fixed width starting from bottom

$$
\begin{aligned}
f_{0}^{()} & =1 \\
f_{1}^{()} & =\frac{t_{1}}{1-t_{1}} \\
f_{2}^{()} & =\frac{t_{1} t_{2}\left(1-t_{1} t_{2}\right)}{\left(1-t_{1}\right)\left(1-t_{2}\right)\left(1-t_{1}-t_{2}\right)} \\
f_{3}^{()} & =t_{1} t_{2} t_{3} \times\left(1-t_{1}\right)^{-1}\left(1-t_{2}\right)^{-1}\left(1-t_{3}\right)^{-1} \times \\
& \left(1-t_{1}-t_{2}\right)^{-1}\left(1-t_{2}-t_{3}\right)^{-1}\left(1-t_{1}-t_{2}-t_{3}\right)^{-1} \times \text { junk }
\end{aligned}
$$

Enumeration of saturated chains in \mathfrak{N}

Chains with fixed width starting from bottom

Theorem

For each k,

$$
\begin{equation*}
f_{k}\left(t_{1}, \ldots, t_{k}\right)=\frac{t_{1} \cdots t_{k}}{\prod_{i=1}^{k} \prod_{j=i}^{k}\left(1-t_{i}-t_{i+1}-\ldots-t_{j}\right)} \tilde{f}_{k}\left(t_{1}, \ldots, t_{k}\right) \tag{3}
\end{equation*}
$$

where \tilde{f}_{k} is a polynomial.

Enumeration of saturated chains in \mathfrak{N}

 Chains with fixed width starting from bottom
Definition

$a_{n, k}$: number of standard paths of width k and length n.

$$
L_{k}(t)=\sum_{n \geq 0} a_{n, k} t^{n}
$$

Note: $L_{k}(t)=f_{k}(t, \ldots, t)$.

$$
\begin{align*}
& L_{1}(t)=\frac{t}{1-t} \\
& L_{2}(t)=\frac{t^{2}(1+t)}{(1-t)(1-2 t)} \tag{4}\\
& L_{3}(t)=\frac{t^{3}\left(1+5 t-2 t^{2}\right)}{(1-t)(1-2 t)(1-3 t)}
\end{align*}
$$

Enumeration of saturated chains in \mathfrak{N}

Chains with fixed width starting from bottom

Theorem

$$
\begin{equation*}
L_{k}(t)=\frac{t^{k} \tilde{L}_{k}(t)}{\prod_{i=1}^{k}(1-i t)} \tag{5}
\end{equation*}
$$

where $\tilde{L}_{k}(t)$ is a polynomial of degree $k-1$ with $\tilde{L}_{k}(1)=2^{k-1}$.

Corollary

For a fixed k,

$$
\begin{equation*}
a_{n+k, k} \sim \frac{k^{k-1}}{(k-1)!} k^{n} \quad \text { as } n \rightarrow \infty \tag{6}
\end{equation*}
$$

Labeled enumeration of chains of fixed width

Labeling of edges

Labeled enumeration of chains of fixed width

Labeling of chains

If $m \in \mathfrak{N}$ and $W=W_{r} W_{r-1} \ldots W_{1}$ is a word in $\left\langle L, R, U_{j}\right\rangle$ which is admissible for m, we give the corresponding chain
$\gamma=\left(m, W_{1} . m, W_{2} W_{1} . m, \ldots, W . m\right)$ non-commutative weight

$$
\begin{equation*}
V(\gamma)=v(\gamma) W \tag{7}
\end{equation*}
$$

Example:

$$
V((), 1,11,12)=t_{1} t_{2} U_{2} L L
$$

- Label edges in Hasse diagram

Definition

$$
\begin{equation*}
F_{k}^{\alpha}=\sum_{\gamma} V(\gamma) \tag{8}
\end{equation*}
$$

$$
\begin{aligned}
F_{K}^{\alpha} & = \begin{cases}0 & \text { if } k<s \\
A+v(\alpha) & k=s \\
A+B+C & \text { if } k>s, \alpha \text { not a.o } \\
A+B+C-D & k>s, \alpha \text { a.o }\end{cases} \\
A & =\left(t_{1} U_{1}+\cdots+t_{k} U_{k}\right) F_{k}^{\alpha} \\
B & =t_{1} L \cdot \Lambda\left(F_{k-1}^{\alpha}\right) \\
C & =t_{k} R \cdot F_{k-1}^{\alpha} \\
D & =R \cdot L^{k-1} v(\alpha)
\end{aligned}
$$

Labeled enumeration of chains of fixed width
$\alpha=$ (2)

$$
\begin{aligned}
& F_{0}^{(2)}=0 \\
& F_{1}^{(2)}=\left(1-x_{1} U_{1}\right)^{-1} x_{1}^{2} \\
& F_{2}^{(2)}=\left(1-x_{1} U_{1}-x_{2} U_{2}\right)^{-1} \times \\
& \quad\left[x_{1} L\left(1-x_{2} U_{1}\right)^{-1} x_{2}^{2}+x_{2} R\left(1-x_{1} U_{1}\right)^{-1} x_{1}^{2}\right]
\end{aligned}
$$

Labeled enumeration of chains of fixed width

Recognizable series

Non-commutative rational series in finitely many variables are recognizable: coefficients correspond to the labels of walks from a start node to an end node in a certain labeled digraph.
Example:

$$
F_{1}^{(2)}=\left(1-x_{1} U_{1}\right)^{-1} x_{1}^{2}=x_{1}^{2}+x_{1}^{3} U_{1}+x_{1}^{4} U_{1}^{2}+\cdots
$$

corresponds to paths from \bullet to \circ in the following digraph:

Labeled enumeration of chains of fixed width
 Grafting digraphs

Theorem

Suppose that α is not all-ones. Then a digraph for F_{k}^{α}, which enumerates saturated chains of widht k in \mathfrak{N}, starting from α, by walks from • to \circ, is obtained from the one for F_{k-1}^{α} by

Labeled enumeration of chains of fixed width Grafting digraphs

Digraph for $F_{2}^{(2)}$:

Enumeration of chains in $\left(X_{2}^{*}, \mathfrak{N}\right)$

$c_{i, j}$ number of saturated chains from () to composition with i one's and j two's. Described by tableaux of height ≤ 2.
Such a tableaux can be obtained
1 from a tableau with $i-1$ parts of size 1 and j parts of size 2 , by adding a part of size 1 to the left,
2 or from a tableau with $i-1$ parts of size 1 and j parts of size 2 , by adding a part of size 1 to the right,
3 or from a tableau with $i+1$ parts of size 1 and $j-1$ parts of size 2 , by adding a box to a part of size 1 .

Enumeration of chains in $\left(X_{2}^{*}, \mathfrak{N}\right)$

We get the recurrence

$$
\begin{equation*}
c_{i, j}=2 c_{i-1, j}+(i+1) c_{i+1, j-1}-\delta_{j}^{0} \tag{9}
\end{equation*}
$$

where δ_{i}^{j} is the Kronecker delta.

Boundary values $c_{n, 0}=1$ for $n \geq 0$.

Enumeration of chains in $\left(X_{2}^{*}, \mathfrak{N}\right)$

For small values of $i, j, c_{i, j}$ is

	j	0	1	2	3	4
i					5	5
0	1	1	4	30	336	5040
1	1	4	30	336	5040	95040
2	1	11	138	2184	42480	986040
3	1	26	504	10800	265320	7447440
4	1	57	1608	45090	1368840	45765720
5	1	120	4698	167640	6174168	242686080
6	1	247	12910	572748	25192440	1151011680
7	1	502	33924	1834872	95091360	4999942080
8	1	1013	86172	5588310	337239840	-

Enumeration of chains in $\left(X_{2}^{*}, \mathfrak{N}\right)$

 Ordinary Generating functions
Theorem

Put

$$
\begin{equation*}
P_{k}(x)=\sum_{n=0}^{\infty} c_{n, k} x^{n} \tag{10}
\end{equation*}
$$

Then $P_{0}(x)=(1-x)^{-1}$ and

$$
\begin{equation*}
P_{k}(x)=\frac{\frac{d}{d x} P_{k-1}(x)}{1-2 x} \tag{11}
\end{equation*}
$$

Enumeration of chains in $\left(X_{2}^{*}, \mathfrak{N}\right)$

Ordinary Generating functions

$$
\begin{align*}
& P_{0}(x)=(1-x)^{-1} \\
& P_{1}(x)=(1-x)^{-2}(1-2 x)^{-1} \\
& P_{2}(x)=2!(1-x)^{-3}(1-2 x)^{-3}(2-3 x) \tag{12}\\
& P_{3}(x)=3!(1-x)^{-4}(1-2 x)^{-5}\left(5-14 x+10 x^{2} x\right) \\
& P_{4}(x)=4!(1-x)^{-5}(1-2 x)^{-7}\left(14-56 x+76 x^{2}-35 x^{3}\right)
\end{align*}
$$

and in general

$$
\begin{equation*}
P_{k}(x)=k!(1-x)^{-1-k}(1-2 x)^{1-2 k} Q_{k}(x) \tag{13}
\end{equation*}
$$

where $Q_{k}(x)$ is a primitive polynomial of degree $k-1$, with $Q_{k}(1)=(-1)^{k+1}$.

Enumeration of chains in $\left(X_{2}^{*}, \mathfrak{N}\right)$

Exponential Generating function

Theorem

Put

$$
\begin{equation*}
P(x, y)=\sum_{i, j \geq 0} c_{i, j} x^{i} \frac{y^{j}}{j!} \tag{14}
\end{equation*}
$$

Then

$$
\begin{equation*}
P(x, y)=\frac{2}{1+\sqrt{1-4\left(y+x-x^{2}\right)}} \tag{15}
\end{equation*}
$$

Proof.

We get from the recurrence relation (10) that

$$
\begin{equation*}
(1-2 x) \frac{\partial P}{\partial y}=\frac{\partial P}{\partial x} \tag{16}
\end{equation*}
$$

Enumeration of chains in $\left(X_{2}^{*}, \mathfrak{N}\right)$

Catalan numbers (dissections of disc, really)

Theorem

With the notations above,

$$
\begin{align*}
& c_{0, n}=\frac{(2 n)!}{(n+1)!}=n!C_{n} \\
& c_{1, n}=c_{0, n+1}=\frac{(2(n+1))!}{(n+2)!} \\
& c_{2, n}=\frac{1}{2} c_{0, n+2}-c_{0, n+1}=\frac{1}{16} \frac{\left(2 n^{2}+6 n+3\right) 2^{2 n+6} \Gamma(n+3 / 2)}{(n+3) \sqrt{\pi}(n+2)} \tag{17}
\end{align*}
$$

Enumeration of chains in $\left(X_{2}^{*}, \mathfrak{N}\right)$

Proof.

$$
\begin{equation*}
P(0, y)=\frac{2}{1+\sqrt{1-4 y}} \tag{18}
\end{equation*}
$$

is the ordinary generating function for the Catalan numbers.

Summary

■ \mathfrak{N} is a candidate for non-commutative Young poset
■ \mathfrak{N} catalogues standard non-commutative term orders
■ Saturated chains in \mathfrak{N} correspond to generalized tableaux. Some types (fixed widht, height ≤ 2) have been enumerated.

- To do
- More refined enumeration, mimicking advanced techniques from Bergeron, Bousquet-Mélou, et Dulucq: coding as labeled binary trees.
- Möbius function?
- Probability that $x_{1} x_{2} x_{1}>x_{2}^{2}$?

For Further Reading I

䍰 François Bergeron, Mireille Bousquet-Mélou, and Serge Dulucq.
Standard paths in the composition poset.
Ann. Sci. Math. Québec, 19(2):139-151, 1995.
曾 Jan Snellman.
Standard paths in another composition poset.
Electron. J. Combin., 11(1):Research Paper 76, 8 pp.
(electronic), 2004.
Ran Snellman.
A poset classifying non-commutative term orders.
In Discrete models: Combinatorics, Computation, and
Geometry, Discrete Mathematics and Theorethical Computer
Science Proceedings AA (DM-CCG), pages 301-314, 2001.

For Further Reading II

R
Matthias Aschenbrenner and Wai Yan Pong
Orderings of monomial ideals
Fundamenta Mathematicae, 181:27-74, 2004.
氰 Jan Snellman.
On some partial orders associated to generic initial ideals. Séminaire Lotharingien de Combinatoire, B43h, 2000.

4 Digraph for $F_{3}^{(2)}$
Digraph for $F_{3}^{(2)}$:

