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Free monoids
Commutative, non-commutative, square-free

X = {x1, x2, x3, . . .}, Xn = {1, x2, . . . , xn}.
X ∗ = free monoid on X , X ∗

n = free monoid on Xn.
[X ] = free abelian monoid on X , [Xn] = free abelian monoid on Xn.
∆(X ) ⊂ [X ] consists of square-free monomials, modified product
u × v = uv if square-free, 0 otherwise. ∆(Xn) ⊂ ∆(X ) restriction.
M will denote any of these monoids.



Partially ordered free monoids
Free noncommutative

D divisibility order on M = X ∗ or on M = X ∗
n .

u ≤D v ⇐⇒ ∃w , t : v = tuw

D fulfills:

(i) ∀v ∈ M \ {1} : 1 ≤ v ,

(ii) ∀u, v ,w , t ∈ M : u ≤ v =⇒ tuw ≤ tvw ,

So (X ∗,D) and (X ∗,D) are partially ordered monoids, pomonoids.



Partially ordered free monoids
Free commutative

D divisibility order on M = [X ] or on M = [Xn].

u ≤D v ⇐⇒ ∃w : v = uw

D fulfills:

(i) ∀v ∈ M \ {1} : 1 ≤ v ,

(ii) ∀u, v ,w ∈ M : u ≤ v =⇒ uw ≤ vw ,

So ([X ],D) and ([Xn],D) are partially ordered monoids.



Partially ordered free monoids
Free commutative-with-zero

D divisibility order on M = ∆(X ) or on M = ∆(Xn).

u ≤D v ⇐⇒ ∃w : v = uw

D fulfills:

(i) ∀v ∈ M \ {1} : 1 ≤ v ,

(ii) M = ∆(X ) : ∀u, v ,w ∈ M : (u ≤ v) ∧ uv 6= 0) ∧ (uw 6=
0) =⇒ uw ≤ vw .

So (∆(X ),D) and (∆(Xn),D) are partially ordered monoids.



Term orders
Definition of

Any multiplicative total extension of D, i.e. a total order � on M
satisfying these conditions, is called a term order. By Higman’s
lemma, they are well-orders for finitely many variables, i.e. there
are no infinite descending chains

u1 � u2 � u3 � u4 � · · ·

The term order � is standard if

x1 ≺ x2 ≺ x3 ≺ x4 ≺ · · ·

Standard term orders are well-orders, even for infinitely many
variables.



Term orders on [Xn]
Weight vectors

Any multiplicative partial order on [Xn] ' Nn extends uniquely to
the difference group Zn by

xα ≤ xβ ⇐⇒ α ≤ β ⇐⇒ 0 ≤ β −α.

Furthermore, it extends uniquely to Qn, and then to Rn.
Conversely, any multiplicative partial order on Rn restricts to a
multiplicative partial order on Zn.
A non-zero weight vector v ∈ Rn yields a multiplicative partial
order on Rn by

α ≥ β ⇐⇒ 〈α, v〉 ≥ 〈β, v〉 ⇐⇒ 〈α− β, v〉 ≥ 0.



Term orders on [Xn]
Refining weight vector orders

If v1, . . . , vr ∈ Rn are non-zero weight vectors, they define a
multiplicative partial order by α ≥ 0 iff

either all 〈α, vi〉 are zero, or

the first non-zero such number is positive.

The multiplicative partial order induced by e1, . . . , en is a term
order, called the lexicographic term order. We have that

x1 ≤lex x2 ≤lex · · · ≤lex xn,

so it is not standard; however, by permuting the variables we get a
a standard lex order.
Refining the multiplicative partial order induced by e1 + · · ·+ en by
e1, . . . , en we get the total degree, then lexicographic term order.



Term orders on [Xn]
Classification

Theorem (Robbiano et al)

Any term order � on [Xn] is given by a tuple of at most n weight
vectors. In other words, there is a real n times n matrix A such that

xα � xβ ⇐⇒ Aα ≥lex Aβ.

The possible order types of � are ω, ω2, . . . , ωn. The term orders
with order type ωn are precisely the n! lexicographic orders.



Term orders on [Xn]
Total degree, then lex, n = 2

-

I

j

I

I

s

I

I

I

Total degree, then lex, with x1 < x2, has order type ω.



Term orders on [Xn]
Lex, n = 2

- - - -

- - - -

- - - -

- - - -

Lex, with x1 < x2, has order type ω2.



Intersection of standard term orders
M = [X ] or M = [Xn]

D =
⋂

` term order on M

`

Y =
⋂

` standard term order on M

`

D on [X2]:

1

x1 x2

x2
1 x1x2 x2

2

Impose x1 < x2, and all consequences, e.g. x2
1 < x1x2. Get:



Y on [X2]

1

x1

x2 x2
1

x1x2 x3
1



Covering rels of Y

Partially defined operators on [X ] and on [Xn]

m = xa1
1 · · · xas

s .
L(m) = x1m, defined everywhere.
Uj(m) =

xj+1

xj
m, defined when aj > 0 (and j < n).

The covering relations of Y are precisely m l L(m) and m l Uj(m).



Strongly stable (Borel) ideals

Filters w.r.t. D ⇐⇒ monomial ideals

Filters w.r.t. Y ⇐⇒ strongly stable monomial ideals

Strongly stable ideals are fixed under the action of the Borel
subgroup of upper-triangular matrices. Important example: generic
initial ideals.



Borelfixed subsets

Restrict Y to [Xn]d , monomials of total degree d .

Filters w.r.t. Y ⇐⇒ Borel-fixed subsets.

Important to know the number of such subsets of given cardinality
(study of minimal free resolutions, algebraic geometry).

xd
2

x1x
d−1
2

xd
1

The Hasse diagram for the strongly stable partial order for n = 2.



The Hasse diagram for the strongly stable partial
order for n = 3.

xd
3

xd
2

xd
1



Bijection with Young’s lattice

fj = e1 + · · ·+ ej. Order-isomorphism

([X ],Y)
log−−→Nω −→ Y

xa1
1 · · · xas

s 7→(a1, . . . , as) 7→ a1e1 + · · ·+ ases

Pictorial representation

x1 x2 x3 x4 x2
1x3

2x4

6 6 6 6 6



Y is Young

([X ],Y) ' Y Young’s lattice

([Xn],Y) ' At most n rows

([Xn]d ,Y) ' At most n rows, exactly d columns

' At most n rows, at most d − 1 columns

[Xn]d ,Y) has following properties:

Sperner

Rank-symmetric

Rank-unimodular

Rank numbers given by coeffs of q-binomial polynomials



q-binomial ranks

1
1
2
2
3
3
3
2
2
1
1

(
1− q6

) (
1− q7

)
(1− q) (1− q2)

= q10 + q9 + 2 q8 + 2 q7 + 3 q6 + 3 q5+

3 q4 + 2 q3 + 2 q2 + q + 1



Filters in ([X3]d ,Y)

Following iso:

1 Filters in ([X3]d ,Y)

2 Partitions into distinct parts ≤ d + 1,

3 (∆([X3]),Y), Y restricted to square-free monomials.

x3
1

x3
3

1

x2x3

x1x2x3



Non-commutative term orders

Definition

≤ is a standard term order on X ∗ (or on X ∗
n ) iff

1 ≤ is a total order on X ∗

2 1 < x1 < x2 < x3 < · · ·,
3 u ≤ v =⇒ sut ≤ svt.

Higman’s lemma =⇒ ≤ well-order. Skip classification



Non-commutative term orders

Classification

X ∗
1 : only 1 < x1 < x2

1 < x3
1 < · · ·, order type ω.

X ∗
2 : Possible order types are

ω, e.g. total degree, then lex.

ω2, e.g. lex.

ωω, only 2 such orderings!

X ∗
n : maximal order type ωωn−1

.
X ∗: maximal order type ωωω

.

Skip Kachinuki ordering



Non-commutative term orders
Recursiv term orders, Kachinuki

u, v ∈ X ∗
2 , u has a occuring x2, v has b occuring x2. Write

u = yu′, v = yv ′, u, v has no common non-empty prefix.

Kachinuki ordering

u > v iff either

1 a > b, or

2 a = b and u 6= v and v ′ = 1 (empty string) or v ′ = x2z ,
z ∈ X ∗

2 .

The reversal of this is the only other standard term order of order
type ωω.



Intersection of standard term orders
M = X ∗ or M = X ∗

n

D =
⋂

` term order on M

`

N =
⋂

` standard term order on M

`

D on X ∗
2 :

1

x1 x2

x2
1

x1x2 x2x1 x2
2

Impose x1 < x2, and all consequences, e.g. x2
1 < x1x2. Get:



Intersection of standard term orders
N on X ∗

2

1

x1

x2
1

x2

x3
1 x1x2 x2x1

x4
1 x2

1x2 x1x2x1 x2x
2
1 x2

2



Intersection of standard term orders
N on X ∗

1

x1

x2
1

x2

x3
1 x1x2 x2x1 x3

x4
1 x2x

2
1 x1x2x1 x2

1x2 x2
2 x1x3 x3x1 x4

Label edges in Hasse diagram



The poset N
Covering rels of N

Partially defined operators on X ∗ and on X ∗
n

m = xa1 · · · xas .
L(m) = x1m, defined everywhere. R(m) = mx1, defined
everywhere.
Uj(m) = xa1 · · · xaj−1xaj+1xaj+1 · · · xas , defined when j ≤ s (and
aj < n).

The covering relations of N are precisely m l L(m) and m l R(m)
and m l Uj(m).



The poset N
Partial semigroup action N

〈L,R,U1,U2, . . . 〉 free (non-comm) semigroup.
Partial left action on N by

WR.m = W .R(m)

WL.m = W .L(m)

WUj .m = W .Uj(m)

(1)

If m = xk
1 then L.m = R.m, otherwise action by different letters

give different result. Convention: R not allowed to act on xk
1 .

Can label edges in Hasse diag according to type of covering rel, get:



The poset N
Labeling of edges of Hasse diag

L

L

L
U1

L U2
U1

U1
RL

Label vertices in Hasse diagram



The poset N
Order isomorphism with poset of compositions

x1 x2 x3 x4 x1x2x1x2x4x2

6 6 6 6 6

Compositions ordered by inclusion of diagrams

⊆

6⊆

Skip multiranking



The poset N
Multi-ranking

Definition

An r -multiranking on a poset P is a map φ : P → Nr such that

u l v =⇒ φ(u) l φ(v)

The Young lattice is ω-multiranked, and so is N.

Multirank of is = (4, 2, 2, 2, 1, 1) ∈ Young. Rank
is the number of boxes, i.e. 12.

Multirank gf = (1−
∞∑
i=1

i∏
j=1

tj)
−1

gf =
1− t

1− 2t



Enumeration of saturated chains in N
d’après Bergeron, Bousquet-Mélou, et Dulucq

α ≤ β in N.
γ = (p0, p1, . . . , ps) saturated chain from α to β, of length s:

α = p0 l p1 l p1 l · · ·l ps = β

Example: γ = (121, 1121, 1122, 2122, 2222, 2322).
Correspond to tableau on β, coding in which order boxes are

added: 1 0 0 0

3 4 0 2

5

Defines width and height of γ.



Enumeration of saturated chains in N
Chains with fixed width

γ = (α = p0, . . . , pn = β), with β = (a1, . . . , ak).
v(γ) = v(β) = ta1

1 · · · tak
k .

f α
k =

∑
γ width k, from α

v(γ).

Explicit description of cover rel in terms of L,R,Uj gives
recurrence relation for f α

k .

Definition

We say that the compositions 11...1 are all-one, “a.o”.
We define Λ(h) to be the result of performing the substitutions
ti 7→ ti+1 on h.



Enumeration of saturated chains in N
Chains with fixed width

Theorem

Let α ∈ N have width r . Then

f α
k =


0 if k < r

A + v(α) if k = r

A + B + C if k > r , α not a.o

A + B + C − t1t2 · · · tk if k > r , α a.o

A = (t1 + t2 + · · ·+ tk)f α
k

B = t1Λ(f α
k−1)

C = tk f α
k−1

(2)



Enumeration of saturated chains in N
Chains with fixed width starting from bottom

f
()
0 = 1

f
()
1 =

t1
1− t1

f
()
2 =

t1t2(1− t1t2)

(1− t1)(1− t2)(1− t1 − t2)

f
()
3 = t1t2t3 × (1− t1)

−1 (1− t2)
−1 (1− t3)

−1×
(1− t1 − t2)

−1 (1− t2 − t3)
−1 (1− t1 − t2 − t3)

−1 × junk



Enumeration of saturated chains in N
Chains with fixed width starting from bottom

Theorem

For each k,

fk(t1, . . . , tk) =
t1 · · · tk∏k

i=1

∏k
j=i (1− ti − ti+1 − . . .− tj)

f̃k(t1, . . . , tk)

(3)
where f̃k is a polynomial.



Enumeration of saturated chains in N
Chains with fixed width starting from bottom

Definition

an,k : number of standard paths of width k and length n.

Lk(t) =
∑
n≥0

an,ktn

Note: Lk(t) = fk(t, . . . , t).

L1(t) =
t

1− t

L2(t) =
t2(1 + t)

(1− t)(1− 2t)

L3(t) =
t3(1 + 5t − 2t2)

(1− t)(1− 2t)(1− 3t)

(4)



Enumeration of saturated chains in N
Chains with fixed width starting from bottom

Theorem

Lk(t) =
tk L̃k(t)∏k
i=1(1− it)

(5)

where L̃k(t) is a polynomial of degree k − 1 with L̃k(1) = 2k−1.

Corollary

For a fixed k,

an+k,k ∼
kk−1

(k − 1)!
kn as n →∞ (6)



Labeled enumeration of chains of fixed width
Labeling of edges

1

x1

x2
1

x2

x3
1 x1x2 x2x1

x4
1 x2

1x2 x1x2x1 x2x
2
1 x2

2

L

L

L

L

U1

LU1

U2 R



Labeled enumeration of chains of fixed width
Labeling of chains

If m ∈ N and W = WrWr−1 . . .W1 is a word in 〈L,R,Uj〉 which is
admissible for m, we give the corresponding chain
γ = (m,W1.m,W2W1.m, . . . ,W .m) non-commutative weight

V (γ) = v(γ)W (7)

Example:
V ((), 1, 11, 12) = t1t2U2LL

Label edges in Hasse diagram

Definition

Fα
k =

∑
γ

V (γ) (8)



Labeled enumeration of chains of fixed width
Recurrence theorem

Fα
K =


0 if k < s

A + v(α) k = s

A + B + C if k > s, α not a.o

A + B + C − D k > s, α a.o

A = (t1U1 + · · ·+ tkUk)Fα
k

B = t1L · Λ(Fα
k−1)

C = tkR · Fα
k−1

D = R · Lk−1v(α)



Labeled enumeration of chains of fixed width
α = (2)

F
(2)
0 = 0

F
(2)
1 = (1− x1U1)

−1x2
1

F
(2)
2 = (1− x1U1 − x2U2)

−1×[
x1L(1− x2U1)

−1x2
2 + x2R(1− x1U1)

−1x2
1

]



Labeled enumeration of chains of fixed width
Recognizable series

Non-commutative rational series in finitely many variables are
recognizable: coefficients correspond to the labels of walks from a
start node to an end node in a certain labeled digraph.
Example:

F
(2)
1 = (1− x1U1)

−1x2
1 = x2

1 + x3
1U1 + x4

1U2
1 + · · ·

corresponds to paths from • to ◦ in the following digraph:

◦

x1U1

��

•
x2
1

OO



Labeled enumeration of chains of fixed width
Grafting digraphs

Theorem

Suppose that α is not all-ones. Then a digraph for Fα
k , which

enumerates saturated chains of widht k in N, starting from α, by
walks from • to ◦, is obtained from the one for Fα

k−1 by

◦
x1U1 ""

x2U2

�� xkUk

pp

Fα
k−1

xkR

=={{{{{{{{

Λ(Fα
k−1)

x1L

ccGGGGGGGGG

•

aaCCCCCCCC

;;wwwwwwwww



Labeled enumeration of chains of fixed width
Grafting digraphs

Digraph for F
(2)
2 :

◦

x1U1

��
x2U2





·x1U1
##

x2R
??������� · x2U1

{{

x1L
__>>>>>>>

•
x2
1

__>>>>>>> x2
2

??�������

Digraph for F
(2)
3 Skip enumeration of chains of height at most two



Enumeration of chains in (X ∗
2 , N)

Starting from bottom

ci ,j number of saturated chains from () to composition with i one’s
and j two’s. Described by tableaux of height ≤ 2.
Such a tableaux can be obtained

1 from a tableau with i − 1 parts of size 1 and j parts of size 2,
by adding a part of size 1 to the left,

2 or from a tableau with i − 1 parts of size 1 and j parts of size
2, by adding a part of size 1 to the right,

3 or from a tableau with i + 1 parts of size 1 and j − 1 parts of
size 2, by adding a box to a part of size 1.



Enumeration of chains in (X ∗
2 , N)

Recurrence

We get the recurrence

ci ,j = 2ci−1,j + (i + 1)ci+1,j−1 − δ0
j (9)

where δj
i is the Kronecker delta.

ci−1,j−1 ci−1,j

2
��

ci ,j−1 ci ,j

ci+1,j−1

(i+1)
99ssssssssss
ci+1,j

Boundary values cn,0 = 1 for n ≥ 0.



Enumeration of chains in (X ∗
2 , N)

Small values of ci,j

For small values of i , j , ci ,j is

j 0 1 2 3 4 5
i

0 1 1 4 30 336 5040
1 1 4 30 336 5040 95040
2 1 11 138 2184 42480 986040
3 1 26 504 10800 265320 7447440
4 1 57 1608 45090 1368840 45765720
5 1 120 4698 167640 6174168 242686080
6 1 247 12910 572748 25192440 1151011680
7 1 502 33924 1834872 95091360 4999942080
8 1 1013 86172 5588310 337239840 -



Enumeration of chains in (X ∗
2 , N)

Ordinary Generating functions

Theorem

Put

Pk(x) =
∞∑

n=0

cn,kxn (10)

Then P0(x) = (1− x)−1 and

Pk(x) =
d
dx Pk−1(x)

1− 2x
(11)



Enumeration of chains in (X ∗
2 , N)

Ordinary Generating functions

P0(x) = (1− x)−1

P1(x) = (1− x)−2(1− 2x)−1

P2(x) = 2!(1− x)−3(1− 2x)−3(2− 3x)

P3(x) = 3!(1− x)−4(1− 2x)−5(5− 14x + 10x2x)

P4(x) = 4!(1− x)−5(1− 2x)−7(14− 56x + 76x2 − 35x3)

(12)

and in general

Pk(x) = k!(1− x)−1−k(1− 2x)1−2kQk(x) (13)

where Qk(x) is a primitive polynomial of degree k − 1, with
Qk(1) = (−1)k+1.



Enumeration of chains in (X ∗
2 , N)

Exponential Generating function

Theorem

Put

P(x , y) =
∑
i ,j≥0

ci ,jx
i y

j

j!
(14)

Then

P(x , y) =
2

1 +
√

1− 4(y + x − x2)
(15)

Proof.

We get from the recurrence relation (10) that

(1− 2x)
∂P

∂y
=

∂P

∂x
(16)



Enumeration of chains in (X ∗
2 , N)

Catalan numbers (dissections of disc, really)

Theorem

With the notations above,

c0,n =
(2n)!

(n + 1)!
= n!Cn

c1,n = c0,n+1 =
(2(n + 1))!

(n + 2)!

c2,n =
1

2
c0,n+2 − c0,n+1 =

1

16

(
2 n2 + 6 n + 3

)
22 n+6Γ(n + 3/2)

(n + 3)
√

π (n + 2)
(17)



Enumeration of chains in (X ∗
2 , N)

Catalan numbers

Proof.

P(0, y) =
2

1 +
√

1− 4y
(18)

is the ordinary generating function for the Catalan numbers.



Summary

N is a candidate for non-commutative Young poset

N catalogues standard non-commutative term orders

Saturated chains in N correspond to generalized tableaux.
Some types (fixed widht, height ≤ 2) have been enumerated.

To do

More refined enumeration, mimicking advanced techniques
from Bergeron, Bousquet-Mélou, et Dulucq: coding as labeled
binary trees.
Möbius function?
Probability that x1x2x1 > x2

2 ?
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Digraph for F
(2)
3

Digraph for F
(2)
3 :

·

x1U1

��
x2U2




x3R

��

·x1U1
##

x2R
??�������� · x2U1

{{

x1L
__>>>>>>>>

•
x2
1

__>>>>>>> x2
2

??�������

x2
2����

��
��

�

x2
3 ��>

>>
>>

>>
◦

x1U1

�� x2U2

pp

x3U3

bb

·x2U1
##

x3R ��>
>>

>>
>>

> · x3U1
{{

x2L����
��

��
��

·

x2U1

11

x3U2

mm x1L

MM
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