

A poset classifying non-commutative term orders

Jan Snellman

MAI, Linköpings Universitet, Sweden

Strongly stable ideals

 $S = \mathbb{C}[x_1, \dots, x_n], V = S_1$. Then $S \simeq S(V)$, the symmetric algebra on V.

- GL(V) = the general linear group $\simeq n \times n$ matrices
- $U \subset GL(V)$ upper triangular matrices
- Diag \subset GL(V) diagonal matrices

These groups act on S by $g(x_i) = \sum_{j=1}^{n} g_{ij}x_j$. If $I \subset S$ is a homogeneous ideal, then Diag fixes I iff I is a monomial ideal. GL(V) fixes I iff $I = S_{\geq d}$ for some d. U fixes I if I is a special kind of monomial ideal, a strongly stable ideal:

$$I \ni x_1^{a_1} \cdots x_n^{a_n}, \ a_i > 0, \ i \le j \le n \qquad \Longrightarrow \qquad \frac{x_j}{x_i} x_1^{a_1} \cdots x_n^{a_n} \in I$$
(1)

The associated poset

Let $[x_1, \ldots, x_n]$ denote the free abelian monoid. We regard it as the subset of monomials in $\mathbb{C}[x_1, \ldots, x_n]$. A monomial ideal I determines, and is determined by, the monoid ideal $I \cap [x_1, \ldots, x_n]$. If we give the monoid $[x_1, \ldots, x_n]$ the divisibility partial order D, then monoid ideals are precisely the filters w.r.t D.

Similarly, I is a strongly stable ideal iff $I \cap [x_1, \ldots, x_n]$ is a filter

w.r.t the strongly stable partial order \mathfrak{C} on $[x_1, \ldots, x_n]$.

Hasse diagrams

Left: \mathfrak{C} for n = 2, Right: \mathfrak{C} restricted to monomials of degree 3, n = 3.

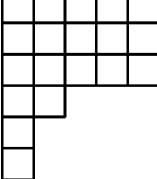


Relation to the Young lattice

It turns out that \mathfrak{C} is isomorphic to the set of Ferrers diagrams with at most \mathfrak{n} columns, ordered by inclusion. The isomorphism is as follows:

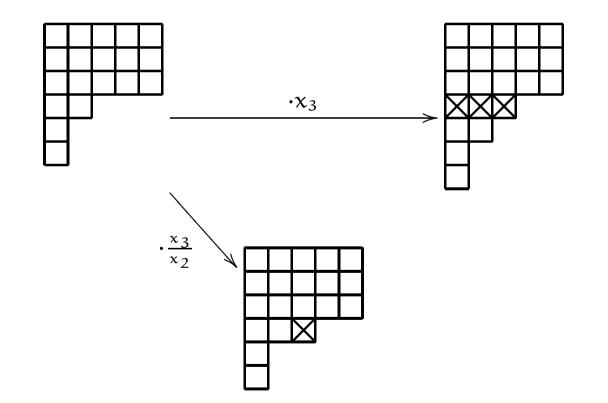
$$x_1^{a_1} \cdots x_n^{a_n} \mapsto (\underbrace{n, \dots, n}_{a_n}, \dots, \underbrace{1, \dots, 1}_{a_1})$$
(2)

The number of rows correspond to the total degree of the monomial. Below: the Ferrers diagram corresponding to $x_1^2 x_2 x_5^3$.



Relation to the Young lattice, cont

One can show that (2) is order-preserving with order-preserving inverse. We illustrate this below with $x_1^2x_2x_5^3 \cdot x_3$ and $x_1^2x_2x_5^3 \cdot \frac{x_3}{x_2}$.



Relation to term orders

A <u>term order</u> \geq on $[x_1, \ldots, x_n]$ is a total well order that respects the multiplication, so that

$$1 \le m \text{ for all } m \in [x_1, \dots, x_n] \tag{3}$$

$$m \ge m' \implies tm \ge tm'$$
 (4)

We say that > is standard if $x_1 \le x_2 \le \cdots \le x_n$.

The intersection of all standard term orders is precisely the strongly stable partial order \mathfrak{C} . In other words, if two monomials m, m' form an antichain w.r.t. \mathfrak{C} (for instance, x_2^2 and x_1x_3) then there are two standard term orders \geq_1 , \geq_2 such that $m \geq_1 m'$ but $m \leq_2 m'$ (e.g. degrevlex and deglex).

The non-commutative analogue

 $X^* =$ the free (non-commutative) monoid on x_1, \ldots, x_n , $T = \mathbb{C}[X^*] =$ the free non-commutative polynomial ring, $V = T_1$. Then $T \simeq T(V)$, so GL(V) acts on T. We call a monomial ideal I \subset T strongly stable iff it is fixed by U, that is, if

$$I \ni m = x_{a_1} \cdots x_{a_r}, \ a_i \le j \le n \implies \frac{x_j}{x_{a_i}} m \in I$$
 (5)

Note: Diag and U also fi xes some non-monomial ideals! | Parallel to the com-

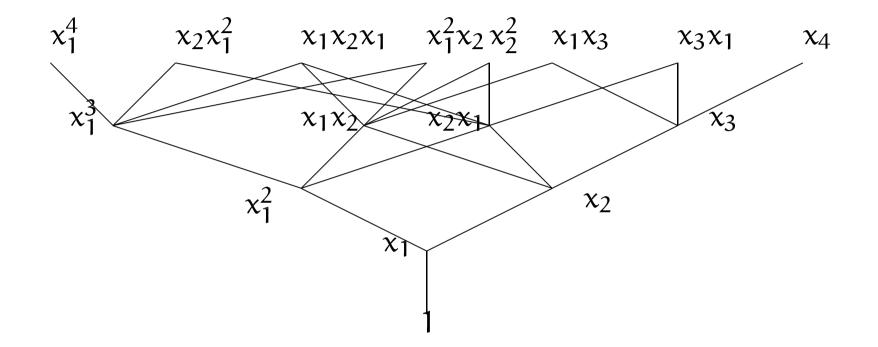
mutative case, strongly stable monomial ideals correspond to filters in the partially ordered set (X^*, \mathfrak{N}) , where \mathfrak{N} is the analogously defined strongly stable poset.

Description of the strongly stable poset

If $m, m' \in X^*$, then m is bigger than m' w.r.t \mathfrak{N} if m can be obtained from m' by repeated applications of

- 1. $\mathfrak{u} \mapsto \mathfrak{sut}, \, \mathfrak{s}, \mathfrak{t} \in X^*$,
- 2. $tx_i s \mapsto tx_j s$, i < j,

The Hasse diagram of $\mathfrak N$



Clearly, \mathfrak{N} is not a lattice.

Non-commutative term orders

A well-order \geq on X^* is a <u>term order</u> if it respect the multiplication, i.e. if

$$1 \le m \text{ for all } m \in X^*$$
 (6)

$$m \ge m' \implies tms \ge tm's$$
 (7)

We say that > is standard if $x_1 \le x_2 \le \cdots \le x_n$. The intersection of all standard term orders is precisely the strongly stable partial order \mathfrak{N} .

Can this be used to understand the possible order types of sorted term orders? Already for 2 vars, there are strange (Kachinuki) term orders with order type ω^{ω} .

Multi-ranking

A poset (P, \ge) is r-multi-ranked if there is an order-preserving map $\phi : P \to \mathbb{N}^r$ (where \mathbb{N}^r is given the natural product order) such that $m \ge m' \implies \phi(m) \ge \phi(m')$. Thus a 1-ranked poset is nothing but a ranked poset in the ordinary sense, and all r-ranked posets are *s*-ranked, for 1 < s < r.

C is n-ranked

The composition ϕ_c is an n-ranking of $([x_1, \ldots, x_n], \mathfrak{C})$.

$$[x_1, \dots, x_n] \xrightarrow{\log} \mathbb{N}^n \xrightarrow{F} \mathbb{N}^n$$
(8)

 $log(x_1^{a_1} \cdots x_n^{a_n}) = (a_1, \dots, a_n)$, and F is the Z-linear extension of $F(\mathbf{e}_i) = \sum_{j=1}^{i} \mathbf{e}_j$. $\phi(X^*) = decreasing vectors = Ferrers di$ $agrams with at most n rows. So <math>\phi_c$ is (when followed by a transposition of Ferrers diagrams) the previous bijection between $([x_1, \dots, x_n], \mathfrak{C})$ and the set of Ferrers diagrams with at most n columns.

(X^*, \mathfrak{N}) is n-ranked.

An n-ranking φ_n is defined by the composition

$$X^* \xrightarrow{\sigma} [x_1, \dots, x_n] \xrightarrow{\varphi_c} \mathbb{N}^n$$
(9)

where $\sigma(x_{b_1} \cdots x_{b_r}) = x_1^{a_1} \cdots x_n^{a_n}$ is the corresponding commutative word, i.e. a_j is the number of ℓ such that $b_\ell = j$. Thus if $m \ge m'$ then $\phi_n(m) \ge \phi_n(m')$. Not conversely: $x_2 x_1^2$ and $x_1 x_2$ form an anti-chain, $(3, 1) \ge (2, 1)$.

When does $m \gg m'$?

The cover(t) relation EXPOSED!

 $m = x_{i_1} \cdots x_{i_d}$, $N = max(\{i_1, \ldots, i_d\})$, a_i the number of occurrences of x_i in m. m is covered by the following words:

- x_1 m and mx_1 ,
- The a₁ words obtained by replacing one occurrence of x₁ by x₂, the a₂ words obtained by replacing one occurrence of x₂ by x₃, and so on, up to and including the a_{n-1} words obtained by replacing one occurrence of x_{n-1} by x_n.

If $m \neq x_1^k$, then these words are distinct, so that m is covered by exactly $2 + \sum_{i=1}^{n-1} a_i$ different words.

The cover relation, cont

The following words are covered by m:

- $x_{i_2} \cdots x_{i_d}$, if $i_1 = 1$,
- $x_{i_1} \cdots x_{i_{d-1}}$, if $i_d = 1$,
- The a₂ words obtained by replacing on occurrence of x₂ with x₁, and so on, up to and including the a_N words obtained by replacing one occurrence of x_N by x_{N-1}.

If $m \neq x_1^k$, then these words are distinct, so that m covers exactly $b + \sum_{i=2}^{n} a_i$ different words, where b is the the total number of x_1 's in the first and last position together. x_1^k covers exactly 1 word, namely x_1^{k-1} .

Sorted term orders

A standard term order \geq is <u>sorted</u> if whenever $i \leq j, s, t \in X^*$ then $tx_ix_js \geq tx_jx_is$. Q = the intersection of all sorted term orders.

m is bigger than m' w.r.t Q if m can be obtained from m' by repeated applications of

1.
$$u \mapsto sut$$
, $s, t \in X^*$,

2.
$$tx_i s \mapsto tx_j s$$
, $i < j$,

3.
$$tx_jx_is \mapsto tx_ix_js$$
, $i < j$

Galois co-connection

We define an "inverse" to $\sigma: X^* \to [x_1, \dots, x_n]$.

$$\begin{bmatrix} x_1, \dots, x_n \end{bmatrix} \to X^*$$

$$x_1^{a_1} \cdots x_n^{a_n} \mapsto x_1^{a_1} \cdots x_n^{a_n}$$

$$(10)$$

Order $[x_1, \ldots, x_n]$ with \mathfrak{C} , and X^* with Q. Then

- 1. σ and σ^+ are order-preserving,
- 2. $\sigma(\sigma^+(m)) \ge m$ for all $m \in [x_1, \ldots, x_n]$,
- 3. $\sigma^+(\sigma(t)) \ge t$ for all $t \in X^*$,

This <u>Galois coconnection</u> relates the Möbius function of Q to that of the Young lattice.

- 1. What can be said about the incidence algebra of \mathfrak{N} ? In particular, about its Möbius function? (σ, σ^+) are <u>not</u> a Galois-coconnection between \mathfrak{N} and \mathfrak{C} .
- 2. Enumerative results about filters in \mathfrak{N} restricted to the set of words of some given total degree?
- 3. Asymptotics of number of different standard term orders "up to a given total degree"?
- 4. Non-commutative sand-pile models???