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Abstract

This work deals with regular convolutions and the structure of the rings
of artihmetic functions where a regular convolution is the multiplication.

In chapter 1 one finds definitions necessary for the report. In section 1.2
the regular convolution is defined. The section contains Narkewicz’ classifi-
cation of regular convolutions.

Chapter 2 treats the restriction to the subring I'[V] = {f : NT —
C|f(n) = 0,n ¢ V} and describe how these parts can be joined together
to the whole ring. The idea behind this work was that it might be easier to
study the subrings and then use the results to describe the whole ring.

The purpose of chapter 3 is to find possible regular convolutions. To
do this we consider the progressions as incidence algebras. The main result
of this chapter is the discovery of the ternary conwvolution, which is then
described in chapter 4.

In chapter 4 one also finds an explicit formulae for the inverse of invertible
elements in the ring with ternary convolution. This formulae accually work
regardless of choice of regular convolution.

The main result of chapter 5 is that there exist only one regular convo-
lution on the ring I'[W], where W is the square-free integers. We also state
the conjecture that all zero divisors and nilpotent elements in I'[IW] are of
polynomial type.

Chapter 6 deals with the restrictions to [n]. We describe the ring as a
monomial ring and study the the monomial ideals a bit further.
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Chapter 1

Introduction and preliminaries

1.1 Definitions

Let N and NT denote the non-negative respectively the positive integers. We
denote the ¢’th prime number by p;, and the set of all prime numbers by P.
The set of prime powers is denoted by PP. Let the C-vector space, with
coordinatewise addition and scalar multiplication, of arithmetic functions
f:NT — C be denoted T.

Definition 1.1. Let f € I'\ {0}. Define the support of f as

supp(f) = {n € N*[f(n) # 0} (1.1)

Define the order of a non-zero element by

ord(f) = minsupp(f) (1.2)
Define the norm of f as .
1= i (13

By definition the zero element has order infinity and norm 0. This is an
ultra-norm on I

If we give C the trivial norm, by for ¢ € C

1 ¢#0
|C|_{ 0 ¢=0

then I becomes a normed vector space over C.

Definition 1.2. For m € NT, define the prime support of m as

psupp(m) = {p € P | p|m}



and (when m > 1) the leading prime as

Ip(m) = min psupp(m)

For n € NT, let
NI = {k € N*[Ip(k) = pn}

Definition 1.3. For any n € NT we let e, be the characteristic function on
{n}, ie.
1 k=n
en(k) = { 0 otherwise

It is clear that any f € I' be be written as

f=Yfnen (1.4)
n=1

This sum is convergent with respect to the norm.

Definition 1.4. Let f € I' be a non-unit. The canonical decomposition of
f is the unique way of expressing f as a convergent sum

F=> " fi= ) fk)ex
i=1 keNlil

The element f is said to be of polynomial type if all but finitely many of
the f;’s are zero. In that case, the largest IV such that fy # 0 is called the
filtration degree of f.

Definition 1.5. An arithmetic function f is multiplicative if f(n)f(m) =
f(mn) for (m,n) =1

1.2 Regular convolutions

The term regular convolution was introduced by Narkiewicz in [1], 1963.

Definition 1.6. A convolution, *4, is defined by

fragn)= > f(d (1.5)

deA(n)
where A(n) is a set of divisors to the natural number n.

In [1] Narkiewicz states and proves the following propositions, which all
have to apply if the convolution is regular.

Proposition 1.7. The convolution x4 s associative if and only if the fol-
lowing two conditions are equivalent:



de A(m), m € A(n)
(b)

m n

, — € A(=
" e A%

Proposition 1.8. The convolution 4 is commutative if and only if d € A(n)

implies that 7 € A(n).

de A(n)

Proposition 1.9. The convolution x4 has a unit element if and only if for
every n, {1,n} C A(n).

Definition 1.10. A convolution is multiplicative if from the multiplicativity
of the factors follows the multiplicativity of the convolution product, i.e. if
f and g are multiplicative, then so is f * g.

Proposition 1.11. The convolution defined by (1.5) is multiplicative if and
only if A(mn) = A(m) x A(n), for (m,n) =1. (Here B x C denote the set
of all integers which can be represented in the form be, b € B,c € C)

Definition 1.12. A convolution, %4 is regular if the ring of arithmetic func-
tions with ordinary addition and this convolution as multiplication is

commutative

associative

has a unit element

preserve multiplicativity

- the inverse function of f(n) = 1 shall take only the values 0 and —1
for prime powers

The most well-known examples of regular convolutions is the Dirichlet
convolution (where A(n) is the set of all divisors of n) and the unitary con-
volution (where A(n) = {d| d|n and (d,5) = 1}).

In [1] Narkiewicz also proves the following theorem

Theorem 1.13. A convolution defined by (1.5) is reqular if and only if there
is a family { mp|p € P} of partitions of N* into (finite or infinite) arithmetic
progressions, such that

if and only if
(a1,...,a;) < (b1,...,0p)

and for all 1 < i <, either a; = 0 or a; and b; belong to the same progression
in the partition ;.



The two extremal cases are the Dirichlet convolution, where all partitions
have only one (infinite) block, and unitary convolution, where all blocks have
size 1.

Definition 1.14. p“ is called a primitive prime power (with respect to the
convolution) if a is the first number in some progression in .

Proposition 1.15. With * as multiplication I' becomes a normed C-algebra.

Proof Take f,g € I'. Let ord(f) = k and ord(g) = I. Then f =
Yovi i f(n)e, and g = >0 g(n)en, f(k) # 0,G(1) # 0. But then it is clear
that

f*ag= f(k)g(l)eg + terms of higher order

and hence |f x4 g| = % %%

| fllgl.



Chapter 2

Restrictions

Definition 2.1. For V C Nt we let T'[V] be the closed subvector space of T’
consisting of functions f : Nt — C with support in V. Suppose that 1 € V.
If A gives a regular convolution product x4 on I', we use this to make I'4[V]
a topological algebra by

Pratn = 37 i @1

Theorem 2.2. If
VicV,cVsc---cWCNY, | Ji=w
then there are natural continuous C-linear epimorphisms
T[Vi]  T[Va] e T[Vg] -+ T[W] T, (2:2)

and
liinl“[Vi] ~ (W] (2.3)

Proof Use the notation in (1.4), i.e

n=1

The natural homomorphisms
oji : TVl = TVi] i<

maps Znevj f(n)en to >, cy. f(n)en. These are clearly epimorphisms.



Now we can draw the following diagram:

IW]----2——>lim_T[V]
aj /
vj)
Tji gi

; \\\ l

The elements in lim. I'[V;] are of the form (f1, fo, f3,...) with f; € T'[V}]
and 0;i(f;) = fi. Define

o; : imT[V;] — T'[Vi]

o; maps (fo, f1, fo,...) € lim_T[V;] to f; € T'[V;]. This gives that o; =
0j; ©0j Define

a; : T[W] — T[V]]

like 0j;, i.e. maps f = >0 f(n)en to >,y f(n)en. Then, if i < j,
oy = Uji @) Ozj.

This induces a homomorphism « : I'[W] — lim. I'[V;] such that the diagram
commutes. « maps fiy € T'[W] to f = (f1, fo, f3,...) € im_T[V;]. ais
clearly injective, since the only function that maps to 0 is the O-function. To
show that « is also surjective, take f € lim. I'[V;]. f = (f1, f2, f3,...) with
fi € Viand 0j(f;) = fi i < j, We want to show that this f € lim._ I'[V}]
corresponds to a unique fy € I[W]. Since fiy € T[W] is determined by it’s
values on W, take w € W. Since UV; = W and Vi C Vo C ..., w €V}
for j large enough. Take this j and define fiy(w) = fj(w). If & > j then
fr(w) = fj(w) since o;(fr) = f;. Hence fw is well-defined. From this
construction follows that o;(fw) = f;- Hence « is surjective.

Proposition 2.3. Let p € P and let By, By € mp; let B] = {p]‘j €B}.
Then the following hold:
(a) T[B]] = C|[z]] if B; is infinite, and I'|B}] = % if Bl has { elements.
(b) If By # Bg then I'[B{UBS] = T'[B]] xcI'[Bj], where Rx¢ S is the fibre
product of the augmented C-algebras R and S, i.e. the the pullback of
the diagram R — C «— §.

(c) T[{p'li > 0}] = lim. (xcI'[Bj]), the inverse limit over n of the fibre
products of the first n (which per definition is isomorphic to the infinite
fiber product Xc(p;ex,))L'1B;])

Proof



(a)

B; € m, means that B; = {0,qa,2a,...}, or B; ={0,a,2a,...,ra}, for
some a. Thus p? € B! implies that j = ka for some k£ € N. Another
way of expressing the same thing would be to say that p? = (p®)* for
some k € N. T'[B;] is then the vector space with basis {e,;|j € B;}.

)

First let B; be infinite. Define
¢ : T[Bj] — Cl[x]]

J
i — T a

€pi

This is a homomorphism since j,1 € B; and B 1nﬁn1te implies that
+m

epi ¥ epm = €pitm and @(epitm) = 25 = pha® = = (e )p(epm).

It is well defined, and since the only thlng that maps to 0 is 0, it’s

injective. Since B; is infinite for any & € N there exists a j € B;

such that j = ka, i.e. for any z* there exists a function epi such that

A . . . . .
p(ep) = Ta = x*. Thus ¢ is surjective, and hence an isomorphism.

So in this case I'[B]] = C[[x]].

Now let B be finite with £ elements. Then I'[ B;] has a basis {e1, eye, €24,
cey €p(£—1)a}. Now define the following homomorphism

J
€pj = ZTa

If j,m € B;, but j+m ¢ By, i.e. j+m > la, then ey * eym = 0, so in
order to make o well defined, ¢(e,; )p(eym) = 0. Assume j+m = La+n.

Since ¢(ep )p(epm) = vhze = a:H;m =" = 2let =028 = 0, ¢

is well defined and as above we get that I'[B]] = %.

Define

g1 : F[BH —C

fe= 1)

Define go analogous. gi(eyi * €,) = gi(epiti) = epti(l) = 0 =
ep(l)pj()lfz—l—]eBl,z—i—]#Oandgl(z*e) 91(0) =0
ifi+j ¢ Bi. Ifi+j = 0theni=j=0and gi(epo *ep) =
gi(exrxer) =gi(er) =ei(1) =1=1-1=gi(e1)g1(e1). Thus g1 and g,
are well defined epimorphisms.
We can now draw the following commutative diagram:

I'[B| U BY]
P
\ /

B [B2)



q1 and g2 are defined in the natural way:

a( S fme) =Y fn)en

neB|UB) neB|
We have a homomorphism
p1: T[BY] xc T[By] — T'[B]

(f17f2) = fl

We also have a homomorphism ps defined analogous to p;. This gives
the induced homomorphism ) in the following diagram:

P[B1] xc T'[By)

2 e

I[B1 U By

IB] [By]

q1 q2

1 is defined in the following way:

(Y fmen) = (Y f(n)en, Y f(n)en)

n€EBJUB) n€B] neB)

1 is injective since ¢ (f) = (0,0) implies that f lacks support in both
B and B), and hence it lacks support in Bj U B). To show that v is
surjective, take (f1, fa) € T[B}] xc'[B}]. Since every f € T'[BjUB}] is
uniquely determined by the values it takes on BjUBY}, take w € B{UB}.
Then there are three possibilities, w € Bj, w € Byorw = 1. lf w € B,
let f(w) = fi(w), if w € Bh, let f(w) = fo(w), if w =1 then, since the
diagram commutes f1(1) = f2(1) and to let f(1) = f1(1) = f2(1) will
therefore be well-defined. Hence this f exists and is unique, hence ¥
is surjective.

-.T[By U By =T [By] xc T'[B))
Define the following homomorphisms
o : Tl{pli > 0}] = TB}] xc - xc T[B)
a; is defined in the same way as 1. i.e. it maps e, to the vector with
e,k 8 0N positions ny, na, . .., Ny, if eyx has support in T[By, |, T[By,], - - -,

I'[B;, ] and 0 on all other positions. «; is clearly an epimorphism.

gj . IEII(XCP[B;-]) — F[Bi] Xc - X F[B}]

10



oj maps (f, (fu)i_y (fr)iors---) to (fu)ly-
Oji - F[Bi] Xc - X F[B;] — F[Bﬂ Xc - X F[BZ{], 1 < ]

04 mMaps (fl, fg, ceey fz', e ,fj) to (fl, f2, ceey fz) These induce a ho-
momorphism

a: T[{p'li > 0}] — lim(xcl'[Bj])

a takes an element f' € T[{p‘li > 0}] to (ai(f'),a2(f’),...). It’s

obvious that « is injective, and since all a;:s are epimorphisms, « is
also surjective.

- T[{p'li > 0}] = lim(xcT[Bj])
Proposition 2.4. Let p,q € P,p # q. Let 1 € B} C {p'li >0}, 1 € By C

{¢'li > 0}. Then
(B By] = T[By|®cT'[By)

as C-algebras, i.e. T'[B]Bb] solves the following universal problem,

I'[B]
/ P1
riBE)- - % -2p
X P2
I'[B]

where @; : T[B}] — D,i = 1,2 are bounded C-algebra homomorphisms into
a complete C-algebra D and o; : T'[B]] — T'[B}BS],i = 1,2, are bounded
C-algebra homomorphisms.

If both T'[B}] and T[BS] are finite, the complete tensor product can be
replaced by ordinary tensor product over C.

Proof Define

o; : T[B]] — T'|B{Bj), Z cje; — Z cjej, i=1,2
JEB] JEB]

These are obviously bounded C-algebra homomorphisms. I'[B]Bj] is obvi-
ously a complete C-algebra. In order to verify the universal property for
[[ByBj], let ® denote the C-bilinear map ® : I'[B}| x I'[BS] — D, (f1, f2) —
©1(f1)p2(f2), which is bounded by |p1||p2|. If one can prove that this in-
duces a unique bounded C-algebra homomorphism 1) such that the following

11



diagram commutes, then this v will also make the diagram in the proposition
commutative.

[[Bi] x T[By] —— I'[B1 By

x denotes multiplication, i.e. the convolution. It must be verified that =

is bilinear and bounded. The bilinearity follows from the fact that * is a
regular convolution, and hence it’s associative and distributive. That * is
bounded is verified by an easy calculation.

Now, let W C T'[B] Bj] be the set of all elements on the form Zf\io Zé\;o Cij€pigi €
['[B{B}] where M, N are finite. Then we have the following diagram

L[Bi] x T[By] — w

Then it is clear that ¢(f), f € W is determined by the values of ¢ of the
epiqj’s. We have that

D(epi,eni) = p1(epi)pa(ey)

and since the diagram has to be commutative we have that
Y(epigr) = p1(ep)p2(ey)

But since W = T'[ B} B}] we can apply proposition 6 from chapter 1.1.7 in [2]
which say that there exist a unique ¥ such that this diagram commutes

BBy~ D

Hence I'[B] Bj] solves the universal problem and hence
[[B{ B3] = T'[B{]&cl([Bs]

If I'[By] and I'[B}] are finite just skip the last step in the proof and it is
clear that I'[B]Bj| = T'[B}] ®c T'[B].
Proposition 2.5. Let T'; = F[{p{\] > 0}]. Then
'~ lim T1®c...3cl,

n—oo
Proof Let Ty = T[{p]', .. .pi’“ }]. Then by putting B, = {p/|j > 0} and
use induction on proposition 2.4 we get that 'y = I'&c...0clk. But
now we can apply theorem 2.2 which gives the result.

12



Chapter 3

Incidence algebras

Assume that A gives a regular convolution, and that W C NT contains
1. Define a partial order <=<4 on W by m <4 n iff m € A(n). Then
W = (W, <,4) is a locally finite poset, so we can define its incidence algebra
I(W), which consists of all C-valued functions on closed intervals in W, with
pointwise addition and multiplication of scalars, and with the convolution

product
)= > fla,g(le,b]) (3.1)

a<c<b

It is given the topology of pointwise convergence.

The reduced incidence algebra Red(W) of W consists of the subalgebra
of functions which take the same value on equivalent intervals, where [a, b]
and [c, d] are considered equivalent if b/a = d/c.

Theorem 3.1. As a topological C-algebra, Red(W) is isomorphic to T'[W].

Proof

Red(W) = {f € I(W,C)|f(z1,51) = f(w,y2) if 22 =2
I xI9

Then Red(W) is the reduced incidence algebra of W over C. The mapping
¢ : Red(W) — T'[W] such that

fe= " f(ne
n=1

is a bijection. Then, if f,g € Red(W)

(F-9)tm) = > Jdgdn) = > f(dg(1,%)

deA(n) deA(n)
and if - - -
(; anen) * (; bnen> = ; Cn€n



then

Cnen = E aded*b%e%: g adb%en

deAy deAn

which implies ¢, = 3¢ 4, anbz. This shows that multiplication in Red(W)
corresponds to multiplication in I'[W]. It follows that Red (W) is isomorphic
to T[W].

Definition 3.2. @ is an operation on posets defined as follows. P & @ has
PUQ as a subset. u < v iff either

e yve Pandu<win P, or
e yveRandu<vin Q, or
e uec Pveq.

Definition 3.3. A subset B of a partially ordered set is a chain if for any
u,v € B, either u < v or v < .

Definition 3.4. A wedge of chains is a set of chains {C;| i € I} with an
element w such that w < u for all u € C;.

We give a counterpart to Proposition 2.3:

Proposition 3.5. Let p € P and let By, By € mp; let B = {p’|j € B; }.
Partially order B, and By U BY as above. Let N denote the natural numbers
with their natural order, and [n] the induced subposet on {1,2,...,n}. Then

the following hold:
(a) Bl =N if B} is infinite, and = [(] if B, has { elements.
(b) If By # B}, then

BiuBy =1 & [(B1\{1}) + (B; \ {1})]

i.e. the Hasse diagram of B} U B} is obtained by placing the diagrams
of B and B} next to each other, then identifying the two elements
corresponding to 1.

C g > 1s a wedge of chains, one for eac oc i € m,, joine
Pl >0 dg h ; h block B ps J d
together with the element 1 as the minimum.

(d) There is at most one infinite chain, and if there is an infinite chain,
there is a common bound of the lengths of the other chains.

Proof

14



(a) Let B! be infinite. Since B; € 7, Bl = {1,p% p**,...}. Define
¢: B, —N
P41
This is obviously a poset isomorphism.
Let B! be finite. Now Bl = {1,p%,...,p" D%}, Define
¢ B — [{]

pier+1l
Also an obvious poset isomorphism.
&5 + 1s the poset with subset UBs, and u < wv
b) [1] @ (B{\ {1} + B, \ {1}) is th ith subset B] U Bj, and u <
iff either
—u=1,or
— u,v € B and u <,

— u,v € By and u < v.

Define
¥ ByUBy — 1@ [(By\ {1}) + (B \ {1})]
BiUBy 2 p™ = p™ € [1]@[(By \ {1}) + (B3 \ {1})]

It is obvious from the above that the inverse of this bijective homo-
morphism preserves the order. Hence it’s an poset isomorphism.

(c) Follows from theorem 2 in [1].

(d) Assume that the diagram has two infinite chains, B} and Bj. Then
B; ={0,a,2a,...}

By ={0,b,2b,...}
But since ba = ab and ba € By, ab € Bs we have a contradiction.

Assume that the diagram has one infinite chain, say Bj. Let B} =
{0,a,2a,...}. Then the common bound of length of the other chains
have to be a because if a chain, B}, has length a + 1 then B; =
{0,0,2b,...,ab} and then it would intersect Bj.

Proposition 3.6. If all chains in a Hasse diagram of posets {p‘|li > 0}
have the same length, then the length have to be 2, 3 or the diagram will be
composed of only one infinite chain.

15



Proof We already know the existence of a convolution with all chains
of length 2, namely the unitary convolution. Therefore this proof considers
only wedges with chains of length > 2.

The case with only one infinite chain is the well-known Dirichlet convolution
so the rest of the proof only deals with finite chains.
Let all chains be of length > 2. Then the chains is constructed as follows

{0,1,2,...,r — 1}
{0,r7,2r,...,(r — 1)r}
{0,r+1,2(r+1),...,(r=1)(r+1)}

{0,8,2s,...,75}

where s is the first number not in any previous chain.

Assume r is even, then r > 3, so there exists chains with r and r + 2 as first
non-zero element. r and r+2 is even and hence we can factor out 2 and their
least common multiple will be w But since both § and % =5+ 1is
< r —1 the least common multiple will be in both chains and hence the only
wedge of chains where all chains are of the same even length is the unitary
case.

Now assume 7 # 3 is odd. Consider r 4+ 1 and r 4+ 3. There exists chains
with r 4+ 1 and r + 3 as first non-zero element. The least common multiple
of r+1and r—+3is w Since both % and # is <r — 1 the least
common multiple will be in both chains and hence there exist no diagram
with all chains of ha same odd length > 3.

When r = 3 the chains will be:

{0,1,2}
{0,3,6}
{0,4,8}
{0,5,10}
{0,9,18}

It is clear that this chains will never intersect, because if we continue to take
the next number not in any previous chain, say s, then 2s will clearly not

be in any previous chain. Because of the fundamental theorem of arithmetic
2s #£ 2t if s £ t.

Proposition 3.7. All diagrams, except for the one with just one chain of
infinite length (i.e. the Dirichlet convolution), must contain infinitely many
chains of length 2 or 3.

Proof Assume that the diagram does not contain any chains of length 2
or 3. Let the chain containing 1 have length r. r is finite, since otherwise we

16



Figure 3.1: Posets of Dirirchlet, unitary and ternary convolution, restricted
to a powers of a single prime

have the Dirichlet case and moreover r > 4, since the diagram doesn’t have
chains of length 2 or 3. Then we will have the chains

(0,1,...,r—1}
{0,7,...,sr}
{0,7+1,....t(r+1)}
{0,74+2,...,u(r+2)}
{0,74+3,...,0(r+3)}

with s,¢,u,v > 3. But then it follows from the proof of proposition 3.6 that
two chains have some element in common, which is a contradiction. In the
same way we can assume that there is only finitely many chains of length 2
and 3. Then there exist a number, r, such that {0,r,2r} is the last chain
of length 3 and there exist a number s such that {0, s} is the last chain of
length 2. Take the largest number of » and s. Now we can apply the same
argument as above and get a contradiction.

Proposition 3.8. Let p,q € P, p#£q. Let 1 € By C {pl‘z > 0}, 1€ By, C
{qi‘i >0 } Then

BlBg = Bl X BQ,
where the x denotes the Cartesian product of the posets By and Bs.

Proof The order in BBy is defined as usual, i.e. pq® > p"¢® iff p* > p"
and ¢® > ¢°. The same order is used in By x By, i.e. (p%¢%) > (p",¢°) iff
p® > p" and ¢® > ¢°. Define

gO:BlBQ—>Bl><BQ
P — (", q°)

17



Since ¢(p®) = (p®, 1), ¢ is a homomorphism since multiplication in By x Bs
is componentwise multiplication. This makes ¢ a bijection. We can also
define the inverse to ¢

e N, e") =p'¢
The inverse is well-defined and (p", ¢®) < (p™,¢™) implies that ¢((p", ¢°)) =
p"q® < p"q™ = ((p", q™)) according to the definition of order above. Hence

 is an order preserving bijection whose inverse is order preserving and hence
it’s a poset isomorphism.

. B1By = By X By
Proposition 3.9. The poset (N1, <4) is isomorphic to the infinite direct

product of the posets ({p{ ‘j >0 } ,<a). Then (N, <4) is isomorphic to S.

Ifn € N, then the interval [1,n] is isomorphic to a product of finitely many
finite chains.

ai, a2

Proof Let n € NT have the prime factorization n = p{*p3? - - - p%» Define

o (N, <a) = ({pllj = 0} x {pdlj > 0} x ..., <a)

¢ map n to the vector with p{* on the i:th places and 0 on all others. This
is clearly a bijection. The inverse of ¢ then exists and

by b
(p(flapgav"') Z (p117p227"')
implies a; > b; for all + € N. Hence

by, bo

— — b b
(P pY - )) = P = py ey =T (0 pg )

{plli > 0} x {pdlj >

12

Hence ¢ is a poset isomorphism and (NT, <4)
0} X oo, SA)

If 1 < n € N then either n is prime or there exists a largest prime number
pr < m. For each prime p; there exists a unique number [; € N such that
péi is the largest power of p; less then or equal to n. Then as above we can
define a mapping

¢ ([1,n],<a) = (P10 <j <} x-x {pll0 <j < U}, <a)

This mapping is a poset isomorphism according to the above. The number

of chains is clearly finite and all {p]|0 < j <[;} are clearly finite chains.
Let 1 € W C Nt. We define the zeta function of T[W] to be ( =

Y onew n € T[W], and let the Mébius function be its multiplicative inverse

p=c¢

Theorem 3.10. p(p{* ---p) is (—=1)" if all p{* are primitive, 0 otherwise.
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Proof Let p® be primitive. Then

prC = Y @B = Y uld) = p(1) + () = 1+ ) =0

deA(p®) deA(p*)

which implies that p(p®) = —1 if p® is primitive. Then, if p®|p??,

prC®) = D uld) = p(l) + p(p®) + pP*) =1 — 14 p(p*) =0
deA(p)

It follows by induction that pu(p®) = 0 if p* non-primitive.
Let n = p{*p3? where both p{* and p5? are primitive. Then

D uld) = p(1) + ppi) + n(p5?) + n(pips?) =
deA(n)
=1-1-1+p(pi'py’) =0

Hence p(pf'p§?) =1 = (—1)%. Assume that p(p*---pr7') = (=1)""Lif all
p;* are primitive. Let n = p{*---p% where all pj* are primitive. Then

r—1

> opd)=>" <:> (—1) + p(p™ - p™) =0

deA(n) i=1

Hence p(p}®---pfr) = (—1)" if all p{* are primitive.
Let n = p%bpg where p%b is non-primitive and pg, p? is primitive. Then

> () = p(1) + p(p3) + p(@h) + ue) + nip3) + ppi’ps) =
deA(n)

=1-1-1+0+1+u(pPp5) =0

which implies that u(p?®p$) = 0. Induction over the number of factors gives

that p(p]® - - - ptr) = 0 if one of the p;’s is non-primitive. Moreover induction
over the number of non-primitive factors then shows that u(p{*---p%) =0
if some of the p}’s are non-primitive.
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Chapter 4

Ternary convolution

In proposition 3.6 we concluded that the unitary convolution and the Dirich-
let convolution both have the property that a Hasse digram of posets {p|i >
0} has the property that all wedges of chains had the same length. The
proposition said that there were only one more convolution with this prop-
erty. We call this convolution ternary convolution. Since both Dirichlet
convolution and unitary convolution is well-known it might be interesting to
look into this ternary convolution and see what can be said about it. The
ring of arithmetic functions with ternary convolution is obviously isomorphic
to the complete tensor product of countably many copies of %.
Proposition 4.1. A prime power p® is primitive if either a is odd or a = 2D
where b is odd and o is even.

Proof Ternary convolution is determined by the progressions {0, 1,2},
{0,3,6},{0,4,8},...,{0,s,2s},..., where s is the next number not in any
previous chain. The primitive prime powers are p" where n is the first non-
zero element in some chain. The third element in every chain is divisible by
2, hence all p® with a odd are primitive. Hence if a = 2b with b odd, then
pa
be the third number in any chain (because if it were the third number then
2b would be primitive). Continuation in this way gives the result.

is non-primitive. This gives that p22b must be primitive, since 22b can’t

Corollary 4.2. The proportion of a such that p® is primitive in the interval
[1,1] is near 2 for large I.

Proof In a large interval near % of the numbers are odd. It is also clear
that near i is divisible by 4. This discussion leads to the following formulae

1 1 1 1 1 " 1.k
21 st mt Tt ()
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Since when we add all numbers divisible by 4, we also get those divisible
by 8, which don’t give primitive powers of a prime, so therefore we have to
subtract these, and so on. Developing the sum above gives that the number
of a such that p® is primitive is % in an interval large enough.

In [3] Schinzel formulate a formulae for the inverse function to an invert-
ible function f under unitary convolution. Here we do the same thing for the
ternary convolution. The formulae we give actually works for every regular
convolution, the tricky part is just to factor n into primitive elements. In
proposition 4.3 we show that this can be done under the ternary convolution,
but it is easy to realize that n can be factored into primitive elements in a
unique way with respect to any regular convolution.

Proposition 4.3. Any number n € N has a unique factorization into prim-
1tive elements.

Proof Every n € N has a unique prime factorization n= p‘f1 ng - pik.

z

Then if p}* is non-primitive one can write p;" = pl pz where pZ must be
primitive. Hence it follows that n can be written as a product of primitive
elements in a unique way.

Definition 4.4. For a number n € N let v(n) be the number of primitive
prime powers counted with multiplicity in the factorization of n.

Proposition 4.5. If f(1) = 1 the inverse function of f exists and is given
by the formulae

=1
v(n)
f1<n)=k SO Hf forn > 1
=1 cdp =n

ds EA(n)d >1

Proof The formulae is obviously true for n = 1, thus let n > 1. Then we
have

frit e = Y F@ G =+ Y F@FE) + fn) =
deAt) S

=> (-nF > Hf

k=1 cdp =n
d; €A(n) di >1

(%)
Yoo ) (-1 > Hf =0
d e A(n) k=1 dk_%
1<d<n deA( ), d; > 1
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since

v(g) k v(n) k
PRI CDBICE L DR [ FICOENIOEEC S W [ FAC0)
d e A(n) k=1 dy---dp =5 =1 k=1 dy---dp=mn =1
1<d<n dieA(%),di>1 d; € A(n),d; > 1

One of the questions that we hoped to be able to answer about this ring
was what are the nilpotent elements and the zero divisors in the ring. This
work isn’t finished yet, but a result on the way is proposition 4.9. To get
there we need a few lemmas.

Lemma 4.6. 1. If p 1s primitive, then epa x €pa = €p2a
2. If p* is non-primitive, then epa * epa = 0

3. If a #b, then epe x ep =0

Proof
1.
epoxepa(PP) = D epald)ep(dy) =
didy = p>®
d; € A(p*®)

= epe (P*)epe (1) + epe (P)epe () + epe (Depe (p*) = 0+ 14+ 0 =1

Epa * Epa (ph) = E epa(di)epa(da) =
dids = p2®
d; € A(p*®)

= epa(p*)epa(1) + epa(1)epa (p*) = 0

3. If a # b then p® is either primitive or non-primitive. If p? is primitive,

then
epa ¥ €y (p™) = Z epa(di)ey(dz) =
dydy = p®
d; € A(p®?)
= epe (P™)epn (1) + epa (L)eys (p™) = 0
it follows from the calculations above that ey * €, = 0. If p is
2

non-primitive then p® = (p%b) where p%b is primitive. Hence

ab ab ab

epaxeys (D7) = epa (p™)epaa (1) +epa (D2 )epaa(p2 ) +epa(1)eypa(p2 ) = 0
Lemma 4.7. If n = p{*---pi* were all p; are distinct primes, then

en:eptlzl k.- ke

a
pkk
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ak

Proof One can factor p‘lll et o

into it’s primitive parts, so p{'---p* =

b b . . .
qi*---¢q". If pi" is non-primitive, then e o; =€ a; * e a; since
p; p2  p2
2 1

a; n
e o *epfli(pi )= ) e g (de 4 (7)) =1

a; p’L pl
deA(p;*)

Hence
€pon % ok € (n) = e *oxe (n) = Z e (dq)-- e (d) =1

dy--dy=n
Lemma 4.8. Let n = p{*---p/* and m = qll’1 ---qfl, where p; and q; are
primes. Then

0 if for some i, j,p; = q; and a; # b; or p;* non-primitive
em * €n = .

emn Otherwise

Proof This follows directly from Lemma 4.7, the commutativity of the
ring and the properties of the regular three convolution, since if p; = ¢; and
a; # b; for some ¢, j, then clearly

en*em:...*ep%*...*epbj*...:...*0*...:0
K .
K2

On the other had if a; = b; but p{" non-primitive, then

en*em:...*epqi*...*ep%*...:...*0*...:0

Proposition 4.9. In the ring with three-convolution, all elements of poly-
nomial type are nilpotent.

Proof Lemma 4.8 gives that (e,)® = 0 for all n. Hence, since k € NIl
implies that p;|k and Lemma 4.6 then gives

(f)? = ( ) f<k:>ek)3 0

keNldl

If an element is of polynomial type then f = > 2, fi with all but finitely
many of the f;’s are zero. So, because of the above and the pigeonhole

principle,
N 2N+1
f(2N+1) — <Zf7,) =0
i=1

Hence all elements of polynomial type are nilpotent.

Corollary 4.10. All elements of polynomial type are zero divisors in the
ring with ternary convolution.

Proof Let f be of polynomial type. Proposition 4.9 gives that f™ =0
for some m > 1. Hence f x f™~ ! = fm 1« f = 0 and hence f i s a zero
divisor.

Question 4.11. Are all zero divisors of polynomial type?
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Chapter 5

Restrictions to square-free
integers

If W consists of the square-free integers, then the ring I'[W] is isomorphic to
the completion of the group ring to the direct sum of countably many Z/27Z.
An alternative description would be to view the ring as the completion of
the free vector space on finite subsets of N with the multiplication

AUB ifANnB=0

AxB = { 0 otherwise

Theorem 5.1. Let W consist of the square-free integers. Then there is only
one regular convolution on T'[W].

Proof If p € P then, by Proposition 1.9, A(p) = {1,p}. By Proposition
1.11,if p, g € P then A(pq) = {1, p, q, pq}. Induction gives that if n is square-
free, then A(n) = {1,p € P such that p|n; p,q € P such that pq|n; ...; n}.
Hence Definition 2.1 implies that any convolution on I'[IW] is defined as

| emn if mn square-free
em * €n = )
0 otherwise

But this is a unique definition and hence there exist only one regular convo-
lution on I'[W]. mn squarefree implies that there exist no p € P such that
plm and p|n, i.e. (m,n) = 1.

Corollary 5.2. The convolution on T'[W] can be viewed as the unitary con-
volution on the square-free integers.

This means that the ring I'[W] share many properties with the ring T’
with unitary convolution. For example all elements of polynomial type are
nilpotent.

Conjecture 5.3. All zero divisors and nilpotent elements in I'[W] are of
polynomaal type.
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Chapter 6

Restrictions to |n]

Let A be some regular convolution, and let W C NT be a finite subset
closed under taking A-divisors. We will be mostly interseted in the case
W =[n]={1,2,...,n}.

The ring I'[IW] is a monomial ring, i.e. a quotient of a polynomial ring
(on finitely many variables) with a monomial ideal.

Henceforth we assume A fixed and suppress it from notations. Let PP[WV]
be the primitive prime powers in W.
Theorem 6.1. T'[W] = W, where Iy, Jyw are monomial ideals,
and where Iyy = I N{eq|q € PP[W]}, where I is the defining ideal of T' =
Clleg]]

T -

is a subvector space of %. Define

Proof Tt is clear that w
w

. Clicqls € PPIW])]

L

such that
ole ):{ en if en € T[W]
" 0  otherwise
This is a homomorphism, since if ey, e, € T[W], emn ¢ T'[W] then 0 =
©(emn) = ©(em) * o(en) = em * ey, = 0. Ker(yp) is clearly a monomial ideal.
Then Jy = Ker(y) so

_ Cl{eglq € PEW)}]

rw
W] Iw + Jw

Equivalently, W is identified with {e,|w € W} and is regarded as a
multicomplex on PP[W], and I'[W] as the multicomplex ring on W.

Definition 6.2. A facet of W is an element which is maximal w.r.t <u4.
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Definition 6.3. The socle of a homogeneous quotient R = Clzy,...,x,]|/I
is the set
soc(R) ={f € R|fg =0 for all g € m},

where m = (x1,...,z,) is the unique graded maximal ideal in R.
Lemma 6.4. The socle is a graded ideal.

Proof It is obvious that the socle is an ideal. Any f € R can be de-
composed into homogenous components, f = fi + fo + --- + fq. Take
f € soc(R), then since fg = 0 for all g € m we have that (fi+-- -+ fg)z; =
fizi + -+ + fax; = 0 for all 4. This implies that f;x; = 0 for all 1 < 5 < d,
since fix;,..., fqx; are all homogenous of different degrees or 0.

It is obvious that any f = fi1+---+ f; such that f,, € soc(R),1 <n <d
is in soc(R). Hence the socle is a graded ideal.

Lemma 6.5. The element e, € T'[W] is in the socle iff w € W is a facet.
These elements span the socle as a vector space.

Proof n < m if and only if e,, = e, * e, for some p € W. Hence w is a
facet if and only if for all v € W\ {1}, e, * ey # e,k € W, 1e. ey * ey =0
for all v € W\ {1}. Hence w facet implies e,, € soc(I'[W]).

Assume e,, € soc(I'[W]). m is generated by {e,| v € PP[W]}, which
means that it is also generated by the set {e,| v € W\ {1}}. Then, for all
v e WN\{1}, ey *e, =0. Hence either vw ¢ W or w ¢ A(vw). In both cases
we have that e, * e,, ¢ I'[W]. Hence w is a facet.

That these elements then span the socle as a vector space is obvious.

Lemma 6.6. For any w € W, let JJ,, be the ideal in S = w

generated by the set { e, € T[W]|v £ w}. Then the ideal Jy is the intersec-
tion of all ideals JJ,, when w ranges over all facets, in S.

Proof The ideal (1, facet JJw 1s generated by all e4 such that ¢ £ w for
any facet w. An equivalent formulation would be to say that the ideal is
generated by e, such that ¢ ¢ W.

Example 6.7. W = [10]. If A is Dirichlet then PP[W] = {2,3,5,7}, W
is the multicomplex {es, e3, €3, e5, e2e3, €7, €3, e%, ezes ), and so the multicom-
plex ring is

Clez, es, e, e7]

R S 3 5 -
(€5, e5e3, €5e5, exer, €3, e3es, e3er, €2, eser, €3)

(W] =

There is no Iy since I = (0). The facets are 10,9, 8, 7,6 with corresponding
ideals JJl() = (63,6%,67), JJg = 62,65,67), JJg = (63,65,6263,87), JJ7 =
(e2,€3,€5), JJs = (€3, €5, €7, €3).
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2 3 ) 7

Figure 6.1: W = 10, Dirichlet convolution

Example 6.8. If A is unitary convolution, W = [10], then PP[W] =
{2,3,4,5,7,8,9}, W is the multicomplex {es, e3, e4, €5, eae3, €7, €3, €9, €2e5 },

2 2 2 2 2 2 2
IW = (6276264)6268)6376369)647646876576776876 )7

the restriction of I to this ring, and

Jw = (ezer, ezey, e3e5, e3er, ezeg, e4es,

€4€7, €4€9, €5€7, €5€8, €5€9, €7€8, €7€9, 6869)-

The facets are 10,9, 8,7, 6, 4, with corresponding ideals JJ1g = (e3, €4, €7, €8, €9),J Jg =
(62,63764765767768)7 JJS - (62;63764765,67769))JJ7 - (62763764765768569)7
JJs = (es,e5,e7,e8,€9), JJy = (e2, €3, €5, €7, €5,€9) -

6 10

2 3 4 ) 7 8 9

Figure 6.2: W = 10, unitary convolution

Example 6.9. If A is ternary convolution, W = [10], then PP[W] =
{2,3,5,7,8}, W is the multicomplex {e, e3, €3, €5, e2€3, €7, es, €3, e2€5},

Iy = (€3, €3, eaes)
and

2 2 2 2
JW = (62637 62677 6365, 62637 82657 63677 63687 657 85677 6263677 67687 626567)
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The facets are 10, 9,8, 7, 6, 4, with corresponding ideals J.J1g = (e3, €3, e7, es, e%),
JJg = (e2, e5,e2e3,e7,e8), JJs = (e2,e3,¢e5,€7), JJr = (e2,¢e3,¢€5,¢€8), JJg =

2 2
(€3, €5, €7, €8, €3, €2¢5), JJy = (e3, €5, e2€3, €7, €3, €265)

2 3 ) 7 8

Figure 6.3: W = 10, ternary convolution
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