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Abstract
This work deals with regular convolutions and the structure of the rings

of artihmetic functions where a regular convolution is the multiplication.
In chapter 1 one �nds de�nitions necessary for the report. In section 1.2

the regular convolution is de�ned. The section contains Narkewicz' classi�-
cation of regular convolutions.

Chapter 2 treats the restriction to the subring Γ[V ] = {f : N+ →
C|f(n) = 0, n /∈ V } and describe how these parts can be joined together
to the whole ring. The idea behind this work was that it might be easier to
study the subrings and then use the results to describe the whole ring.

The purpose of chapter 3 is to �nd possible regular convolutions. To
do this we consider the progressions as incidence algebras. The main result
of this chapter is the discovery of the ternary convolution, which is then
described in chapter 4.

In chapter 4 one also �nds an explicit formulae for the inverse of invertible
elements in the ring with ternary convolution. This formulae accually work
regardless of choice of regular convolution.

The main result of chapter 5 is that there exist only one regular convo-
lution on the ring Γ[W ], where W is the square-free integers. We also state
the conjecture that all zero divisors and nilpotent elements in Γ[W ] are of
polynomial type.

Chapter 6 deals with the restrictions to [n]. We describe the ring as a
monomial ring and study the the monomial ideals a bit further.
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Chapter 1

Introduction and preliminaries

1.1 De�nitions

Let N and N+ denote the non-negative respectively the positive integers. We
denote the i'th prime number by pi, and the set of all prime numbers by P.
The set of prime powers is denoted by PP. Let the C-vector space, with
coordinatewise addition and scalar multiplication, of arithmetic functions
f : N+ → C be denoted Γ.
De�nition 1.1. Let f ∈ Γ \ {0}. De�ne the support of f as

supp(f) = {n ∈ N+|f(n) 6= 0} (1.1)
De�ne the order of a non-zero element by

ord(f) = min supp(f) (1.2)
De�ne the norm of f as

|f | = 1
ord(f)

(1.3)
By de�nition the zero element has order in�nity and norm 0. This is an
ultra-norm on Γ.

If we give C the trivial norm, by for c ∈ C

|c| =
{

1 c 6= 0
0 c = 0

then Γ becomes a normed vector space over C.
De�nition 1.2. For m ∈ N+, de�ne the prime support of m as

psupp(m) = {p ∈ P | p|m}
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and (when m > 1) the leading prime as
lp(m) = min psupp(m)

For n ∈ N+, let
N|n| = {k ∈ N+|lp(k) = pn}

De�nition 1.3. For any n ∈ N+ we let en be the characteristic function on
{n}, i.e.

en(k) =
{

1 k = n
0 otherwise

It is clear that any f ∈ Γ be be written as

f =
∞∑
n=1

f(n)en (1.4)

This sum is convergent with respect to the norm.
De�nition 1.4. Let f ∈ Γ be a non-unit. The canonical decomposition of
f is the unique way of expressing f as a convergent sum

f =
∞∑
i=1

fi, fi =
∑
k∈N|i|

f(k)ek

The element f is said to be of polynomial type if all but �nitely many of
the fi's are zero. In that case, the largest N such that fN 6= 0 is called the
�ltration degree of f .
De�nition 1.5. An arithmetic function f is multiplicative if f(n)f(m) =
f(mn) for (m,n) = 1

1.2 Regular convolutions

The term regular convolution was introduced by Narkiewicz in [1], 1963.
De�nition 1.6. A convolution, ∗A, is de�ned by

f ∗A g(n) =
∑

d∈A(n)

f(d)g(
n

d
) (1.5)

where A(n) is a set of divisors to the natural number n.
In [1] Narkiewicz states and proves the following propositions, which all

have to apply if the convolution is regular.
Proposition 1.7. The convolution ∗A is associative if and only if the fol-
lowing two conditions are equivalent:
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(a)
d ∈ A(m), m ∈ A(n)

(b)
d ∈ A(n),

m

d
∈ A(

n

d
)

Proposition 1.8. The convolution ∗A is commutative if and only if d ∈ A(n)
implies that n

d ∈ A(n).
Proposition 1.9. The convolution ∗A has a unit element if and only if for
every n, {1, n} ⊂ A(n).
De�nition 1.10. A convolution is multiplicative if from the multiplicativity
of the factors follows the multiplicativity of the convolution product, i.e. if
f and g are multiplicative, then so is f ∗ g.
Proposition 1.11. The convolution de�ned by (1.5) is multiplicative if and
only if A(mn) = A(m)× A(n), for (m,n) = 1. (Here B × C denote the set
of all integers which can be represented in the form bc, b ∈ B, c ∈ C)
De�nition 1.12. A convolution, ∗A is regular if the ring of arithmetic func-
tions with ordinary addition and this convolution as multiplication is

- commutative
- associative
- has a unit element
- preserve multiplicativity
- the inverse function of f(n) ≡ 1 shall take only the values 0 and −1
for prime powers

The most well-known examples of regular convolutions is the Dirichlet
convolution (where A(n) is the set of all divisors of n) and the unitary con-
volution (where A(n) = {d| d|n and (d, nd ) = 1}).

In [1] Narkiewicz also proves the following theorem
Theorem 1.13. A convolution de�ned by (1.5) is regular if and only if there
is a family {πp p ∈ P } of partitions of N+ into (�nite or in�nite) arithmetic
progressions, such that

pa1
1 · · · p

ar
r ∈ A(pb11 · · · p

br
r )

if and only if
(a1, . . . , ar) ≤ (b1, . . . , br)

and for all 1 ≤ i ≤ r, either ai = 0 or ai and bi belong to the same progression
in the partition πi.
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The two extremal cases are the Dirichlet convolution, where all partitions
have only one (in�nite) block, and unitary convolution, where all blocks have
size 1.
De�nition 1.14. pa is called a primitive prime power (with respect to the
convolution) if a is the �rst number in some progression in πp.
Proposition 1.15. With ∗ as multiplication Γ becomes a normed C-algebra.

Proof Take f, g ∈ Γ. Let ord(f) = k and ord(g) = l. Then f =∑∞
n=k f(n)en and g =

∑∞
n=l g(n)en, f(k) 6= 0, G(l) 6= 0. But then it is clear

that
f ∗A g = f(k)g(l)ekl + terms of higher order

and hence |f ∗A g| = 1
kl ≤

1
k

1
l = |f ||g|.
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Chapter 2

Restrictions

De�nition 2.1. For V ⊂ N+, we let Γ[V ] be the closed subvector space of Γ
consisting of functions f : N+ → C with support in V . Suppose that 1 ∈ V .
If A gives a regular convolution product ∗A on Γ, we use this to make ΓA[V ]
a topological algebra by

f ∗ g(n) =
{
f ∗A g(n) if n ∈ V
0 otherwise (2.1)

Theorem 2.2. If
V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂W ⊂ N+,

⋃
Vi = W

then there are natural continuous C-linear epimorphisms
Γ[V1]← Γ[V2]← Γ[V3]← · · · ← Γ[W ]← Γ, (2.2)

and
lim
←

Γ[Vi] ∼= Γ[W ] (2.3)
Proof Use the notation in (1.4), i.e

f =
∞∑
n=1

f(n)en

The natural homomorphisms
σji : Γ[Vj ]→ Γ[Vi] i ≤ j

maps ∑
n∈Vj

f(n)en to ∑
n∈Vi

f(n)en. These are clearly epimorphisms.
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Now we can draw the following diagram:
Γ[W ]

αi

&&

αj

''

α //________ lim← Γ[Vi]

σi

vv

σj

uu
Γ[Vj ]

σji

��
Γ[Vi]

The elements in lim← Γ[Vi] are of the form (f1, f2, f3, . . . ) with fi ∈ Γ[Vi]
and σji(fj) = fi. De�ne

σi : lim
←

Γ[Vi]→ Γ[Vi]

σi maps (f0, f1, f2, . . . ) ∈ lim← Γ[Vi] to fi ∈ Γ[Vi]. This gives that σi =
σji ◦ σj De�ne

αi : Γ[W ]→ Γ[Vi]

like σji, i.e. maps f =
∑∞

n=0 f(n)en to ∑
n∈Vi

f(n)en. Then, if i ≤ j,
αi = σji ◦ αj .
This induces a homomorphism α : Γ[W ]→ lim← Γ[Vi] such that the diagram
commutes. α maps fW ∈ Γ[W ] to f = (f1, f2, f3, . . . ) ∈ lim← Γ[Vi]. α is
clearly injective, since the only function that maps to 0 is the 0-function. To
show that α is also surjective, take f ∈ lim← Γ[Vi]. f = (f1, f2, f3, . . . ) with
fi ∈ Vi and σji(fj) = fi i < j, We want to show that this f ∈ lim← Γ[Vi]
corresponds to a unique fW ∈ Γ[W ]. Since fW ∈ Γ[W ] is determined by it's
values on W , take w ∈ W . Since ∪Vj = W and V1 ⊂ V2 ⊂ . . . , w ∈ Vj
for j large enough. Take this j and de�ne fW (w) = fj(w). If k > j then
fk(w) = fj(w) since σkj(fk) = fj . Hence fW is well-de�ned. From this
construction follows that αi(fW ) = fi. Hence α is surjective.
Proposition 2.3. Let p ∈ P and let B1, B2 ∈ πp; let B′i =

{
pj j ∈ Bi

}.
Then the following hold:
(a) Γ[B′i] ∼= C[[x]] if B′i is in�nite, and Γ[B′i] ∼=

C[x]
x` if B′i has ` elements.

(b) If B1 6= B2 then Γ[B′1∪B′2] ∼= Γ[B′1]×CΓ[B′2], where R×CS is the �bre
product of the augmented C-algebras R and S, i.e. the the pullback of
the diagram R→ C← S.

(c) Γ[{pi|i ≥ 0}] ∼= lim←(×CΓ[B′j ]), the inverse limit over n of the �bre
products of the �rst n (which per de�nition is isomorphic to the in�nite
�ber product ×C(Bj∈πp))Γ[B′j ])

Proof
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(a) Bi ∈ πp means that Bi = {0, a, 2a, . . . }, or Bi = {0, a, 2a, . . . , ra}, for
some a. Thus pj ∈ B′i implies that j = ka for some k ∈ N. Another
way of expressing the same thing would be to say that pj = (pa)k for
some k ∈ N. Γ[B′i] is then the vector space with basis {epj |j ∈ Bi}.
First let Bi be in�nite. De�ne

ϕ : Γ[B′i]→ C[[x]]

epj 7→ x
j
a

This is a homomorphism since j, l ∈ Bi and Bi in�nite implies that
epj ∗ epm = epj+m and ϕ(epj+m) = x

j+m
a = x

j
ax

m
a = ϕ(epj )ϕ(epm).

It is well de�ned, and since the only thing that maps to 0 is 0, it's
injective. Since Bi is in�nite for any k ∈ N there exists a j ∈ Bi
such that j = ka, i.e. for any xk there exists a function epj such that
ϕ(epj ) = x

j
a = xk. Thus ϕ is surjective, and hence an isomorphism.

So in this case Γ[B′i] ∼= C[[x]].
Now letB′i be �nite with ` elements. Then Γ[B′i] has a basis {e1, epa , ep2a ,
. . . , ep(`−1)a}. Now de�ne the following homomorphism

ϕ : Γ[B′i]→
C[x]
x`

epj 7→ x
j
a

If j,m ∈ Bi, but j +m /∈ Bi, i.e. j +m ≥ `a, then epj ∗ epm = 0, so in
order to make ϕ well de�ned, ϕ(epj )ϕ(epm) = 0. Assume j+m = `a+n.
Since ϕ(epj )ϕ(epm) = x

j
ax

m
a = x

j+m
a = x

`a+n
a = x`x

n
a = 0 · x

n
a = 0, ϕ

is well de�ned and as above we get that Γ[B′i] ∼=
C[x]
x` .

(b) De�ne
g1 : Γ[B′1]→ C

f 7→ f(1)

De�ne g2 analogous. g1(epi ∗ epj ) = g1(epi+j ) = epi+j (1) = 0 =
epi(1)epj (1) if i + j ∈ B1, i + j 6= 0 and g1(epi ∗ epj ) = g1(0) = 0
if i + j /∈ B1. If i + j = 0 then i = j = 0 and g1(ep0 ∗ ep0) =
g1(e1 ∗ e1) = g1(e1) = e1(1) = 1 = 1 · 1 = g1(e1)g1(e1). Thus g1 and g2
are well de�ned epimorphisms.
We can now draw the following commutative diagram:

Γ[B′1 ∪B′2]q1
wwooooo q2

''OOOOO

Γ[B′1]
g1 ((PPPPPPPP Γ[B′2]

g2vvnnnnnnnn

C
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q1 and q2 are de�ned in the natural way:
q1(

∑
n∈B′1∪B′2

f(n)en) =
∑
n∈B′1

f(n)en

We have a homomorphism
p1 : Γ[B′1]×C Γ[B′2]→ Γ[B′1]

(f1, f2) 7→ f1

We also have a homomorphism p2 de�ned analogous to p1. This gives
the induced homomorphism ψ in the following diagram:

Γ[B′1]×C Γ[B′2]
p1

wwppppppppppp
p2

''NNNNNNNNNNN

Γ[B′1] Γ[B′1 ∪B′2]q1
oo

q2
//

ψ

OO

Γ[B′2]

ψ is de�ned in the following way:
ψ(

∑
n∈B′1∪B′2

f(n)en) = (
∑
n∈B′1

f(n)en,
∑
n∈B′2

f(n)en)

ψ is injective since ψ(f) = (0, 0) implies that f lacks support in both
B′1 and B′2, and hence it lacks support in B′1 ∪ B′2. To show that ψ is
surjective, take (f1, f2) ∈ Γ[B′1]×C Γ[B′2]. Since every f ∈ Γ[B′1∪B′2] isuniquely determined by the values it takes on B′1∪B′2, take w ∈ B′1∪B′2.Then there are three possibilities, w ∈ B′1, w ∈ B′2 or w = 1. If w ∈ B′1,let f(w) = f1(w), if w ∈ B′2, let f(w) = f2(w), if w = 1 then, since the
diagram commutes f1(1) = f2(1) and to let f(1) = f1(1) = f2(1) will
therefore be well-de�ned. Hence this f exists and is unique, hence ψ
is surjective.

∴ Γ[B′1 ∪B′2] ∼= Γ[B′1]×C Γ[B′2]

(c) De�ne the following homomorphisms
αj : Γ[{pi|i ≥ 0}]→ Γ[B′1]×C · · · ×C Γ[B′j ]

αj is de�ned in the same way as ψ. i.e. it maps epk to the vector with
epk :s on positions n1, n2, . . . , nm if epk has support in Γ[B′n1

],Γ[B′n2
], . . . ,

Γ[B′nm
] and 0 on all other positions. αj is clearly an epimorphism.

σj : lim
←

(×CΓ[B′j ])→ Γ[B′1]×C · · · ×C Γ[B′j ]
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σj maps (f1, (fk)2k=1, (fk)
3
k=1, . . . ) to (fk)

j
k=1.

σji : Γ[B′1]×C · · · ×C Γ[B′j ]→ Γ[B′1]×C · · · ×C Γ[B′i], i ≤ j

σji maps (f1, f2, . . . , fi, . . . , fj) to (f1, f2, . . . , fi). These induce a ho-
momorphism

α : Γ[{pi|i ≥ 0}]→ lim
←

(×CΓ[B′j ])

α takes an element f ′ ∈ Γ[{pi|i ≥ 0}] to (α1(f ′), α2(f ′), . . . ). It's
obvious that α is injective, and since all αj :s are epimorphisms, α is
also surjective.

∴ Γ[{pi|i ≥ 0}] ∼= lim
←

(×CΓ[B′j ])

Proposition 2.4. Let p, q ∈ P, p 6= q. Let 1 ∈ B′1 ⊂ {pi|i ≥ 0}, 1 ∈ B′2 ⊂
{qi|i ≥ 0}. Then

Γ[B′1B
′
2] ∼= Γ[B′1]⊗̂CΓ[B′2]

as C-algebras, i.e. Γ[B′1B
′
2] solves the following universal problem,

Γ[B′1]
σ1

zzttttttttt
ϕ1

!!CC
CC

CC
CC

Γ[B′1B
′
2]

ψ //________ D

Γ[B′1]

σ2

ddJJJJJJJJJ ϕ2

=={{{{{{{{

where ϕi : Γ[B′i] → D, i = 1, 2 are bounded C-algebra homomorphisms into
a complete C-algebra D and σi : Γ[B′i] → Γ[B′1B

′
2], i = 1, 2, are bounded

C-algebra homomorphisms.
If both Γ[B′1] and Γ[B′2] are �nite, the complete tensor product can be

replaced by ordinary tensor product over C.
Proof De�ne

σi : Γ[B′i]→ Γ[B′1B
′
2],

∑
j∈B′i

cjej 7→
∑
j∈B′i

cjej , i = 1, 2

These are obviously bounded C-algebra homomorphisms. Γ[B′1B
′
2] is obvi-ously a complete C-algebra. In order to verify the universal property for

Γ[B′1B
′
2], let Φ denote the C-bilinear map Φ : Γ[B′1]×Γ[B′2]→ D, (f1, f2) 7→

ϕ1(f1)ϕ2(f2), which is bounded by |ϕ1||ϕ2|. If one can prove that this in-
duces a unique bounded C-algebra homomorphism ψ such that the following
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diagram commutes, then this ψ will also make the diagram in the proposition
commutative.

Γ[B′1]× Γ[B′2]
∗ //

Φ

&&LLLLLLLLLLL
Γ[B′1B

′
2]

ψ

{{v
v

v
v

v

D

∗ denotes multiplication, i.e. the convolution. It must be veri�ed that ∗
is bilinear and bounded. The bilinearity follows from the fact that ∗ is a
regular convolution, and hence it's associative and distributive. That ∗ is
bounded is veri�ed by an easy calculation.
Now, letW ⊂ Γ[B′1B

′
2] be the set of all elements on the form ∑M

i=0

∑N
j=0 cijepiqj ∈

Γ[B′1B
′
2] where M,N are �nite. Then we have the following diagram

Γ[B′1]× Γ[B′2]
∗ //

Φ

&&LLLLLLLLLLL W
ψ

��~
~

~
~

D

Then it is clear that ψ(f), f ∈ W is determined by the values of ψ of the
epiqj 's. We have that

Φ(epi , epj ) = ϕ1(epi)ϕ2(epj )

and since the diagram has to be commutative we have that
ψ(epiqj ) = ϕ1(epi)ϕ2(epj )

But since W = Γ[B′1B
′
2] we can apply proposition 6 from chapter 1.1.7 in [2]

which say that there exist a unique ψ such that this diagram commutes
W� _

��

ψ // D

Γ[B′1B
′
2]

ψ // D

Hence Γ[B′1B
′
2] solves the universal problem and hence

Γ[B′1B
′
2] ∼= Γ[B′1]⊗̂CΓ[B′2]

If Γ[B′1] and Γ[B′2] are �nite just skip the last step in the proof and it is
clear that Γ[B′1B

′
2] ∼= Γ[B′1]⊗C Γ[B′2].

Proposition 2.5. Let Γi = Γ[{pji |j ≥ 0}]. Then
Γ ∼= lim

←−
n→∞

Γ1⊗̂C . . . ⊗̂CΓn

Proof Let Γ1...k = Γ[{pj11 , . . . p
jk
k }]. Then by putting B′i = {pji |j ≥ 0} and

use induction on proposition 2.4 we get that Γ1...k
∼= Γ1⊗̂C . . . ⊗̂CΓk. But

now we can apply theorem 2.2 which gives the result.
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Chapter 3

Incidence algebras

Assume that A gives a regular convolution, and that W ⊂ N+ contains
1. De�ne a partial order ≤=≤A on W by m ≤A n i� m ∈ A(n). Then
W = (W,≤A) is a locally �nite poset, so we can de�ne its incidence algebra
I(W ), which consists of all C-valued functions on closed intervals inW , with
pointwise addition and multiplication of scalars, and with the convolution
product

f ∗ g([a, b]) =
∑
a≤c≤b

f([a, c])g([c, b]) (3.1)

It is given the topology of pointwise convergence.
The reduced incidence algebra Red(W ) of W consists of the subalgebra

of functions which take the same value on equivalent intervals, where [a, b]
and [c, d] are considered equivalent if b/a = d/c.
Theorem 3.1. As a topological C-algebra, Red(W ) is isomorphic to Γ[W ].

Proof
Red(W ) = {f ∈ I(W,C)|f(x1, y1) = f(x2, y2) if y1

x1
=
y2

x2
}

Then Red(W ) is the reduced incidence algebra of W over C. The mapping
ϕ : Red(W )→ Γ[W ] such that

f 7→
∞∑
n=1

f(1, n)en

is a bijection. Then, if f, g ∈ Red(W )

(f · g)(1, n) =
∑

d∈A(n)

f(1, d)g(d, n) =
∑

d∈A(n)

f(1, d)g(1,
n

d
)

and if ( ∞∑
n=1

anen

)
∗

( ∞∑
n=1

bnen

)
=
∞∑
n=1

cnen
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then
cnen =

∑
d∈An

aded ∗ bn
d
en

d
=

∑
d∈An

adbn
d
en

which implies cn =
∑

d∈An
anbn

d
. This shows that multiplication in Red(W )

corresponds to multiplication in Γ[W ]. It follows that Red(W ) is isomorphic
to Γ[W ].
De�nition 3.2. ⊕ is an operation on posets de�ned as follows. P ⊕Q has
P ∪Q as a subset. u ≤ v i� either
• u, v ∈ P and u ≤ v in P , or
• u, v ∈ Q and u ≤ v in Q, or
• u ∈ P, v ∈ Q.

De�nition 3.3. A subset B of a partially ordered set is a chain if for any
u, v ∈ B, either u ≤ v or v ≤ u.
De�nition 3.4. A wedge of chains is a set of chains {Ci| i ∈ I} with an
element w such that w ≤ u for all u ∈ Ci.

We give a counterpart to Proposition 2.3:
Proposition 3.5. Let p ∈ P and let B1, B2 ∈ πp; let B′i =

{
pj j ∈ Bi

}.
Partially order B′i and B′1 ∪B′2 as above. Let N denote the natural numbers
with their natural order, and [n] the induced subposet on {1, 2, . . . , n}. Then
the following hold:
(a) B′i ∼= N if B′i is in�nite, and ∼= [`] if B′i has ` elements.
(b) If B′1 6= B′2 then

B′1 ∪B′2 ∼= [1]⊕
[
(B′1 \ {1}) + (B′2 \ {1})

]
i.e. the Hasse diagram of B′1 ∪B′2 is obtained by placing the diagrams
of B′1 and B′2 next to each other, then identifying the two elements
corresponding to 1.

(c) {
pi i ≥ 0

} is a wedge of chains, one for each block Bi ∈ πp, joined
together with the element 1 as the minimum.

(d) There is at most one in�nite chain, and if there is an in�nite chain,
there is a common bound of the lengths of the other chains.

Proof
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(a) Let B′i be in�nite. Since Bi ∈ πp, B′i = {1, pa, p2a, . . . }. De�ne
ϕ : B′i → N

pra 7→ r + 1

This is obviously a poset isomorphism.
Let B′i be �nite. Now B′i = {1, pa, . . . , p(`−1)a}. De�ne

ϕ : B′i → [`]

pra 7→ r + 1

Also an obvious poset isomorphism.
(b) [1]⊕ (B′1 \ {1}+B′2 \ {1}) is the poset with subset B′1 ∪B′2, and u ≤ vi� either

� u = 1, or
� u, v ∈ B′1 and u ≤ v,
� u, v ∈ B′2 and u ≤ v.

De�ne
ψ : B′1 ∪B′2 → [1]⊕ [(B′1 \ {1}) + (B′2 \ {1})]

B1 ∪B2 3 pra 7→ pra ∈ [1]⊕ [(B′1 \ {1}) + (B′2 \ {1})]

It is obvious from the above that the inverse of this bijective homo-
morphism preserves the order. Hence it's an poset isomorphism.

(c) Follows from theorem 2 in [1].
(d) Assume that the diagram has two in�nite chains, B′1 and B′2. Then

B1 = {0, a, 2a, . . . }

B2 = {0, b, 2b, . . . }

But since ba = ab and ba ∈ B1, ab ∈ B2 we have a contradiction.
Assume that the diagram has one in�nite chain, say B′1. Let B1 =
{0, a, 2a, . . . }. Then the common bound of length of the other chains
have to be a because if a chain, B′i, has length a + 1 then Bi =
{0, b, 2b, . . . , ab} and then it would intersect B1.

Proposition 3.6. If all chains in a Hasse diagram of posets {pi|i ≥ 0}
have the same length, then the length have to be 2, 3 or the diagram will be
composed of only one in�nite chain.
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Proof We already know the existence of a convolution with all chains
of length 2, namely the unitary convolution. Therefore this proof considers
only wedges with chains of length > 2.
The case with only one in�nite chain is the well-known Dirichlet convolution
so the rest of the proof only deals with �nite chains.
Let all chains be of length r > 2. Then the chains is constructed as follows

{0, 1, 2, . . . , r − 1}
{0, r, 2r, . . . , (r − 1)r}
{0, r + 1, 2(r + 1), . . . , (r − 1)(r + 1)}
. . .
{0, s, 2s, . . . , rs}
. . .

where s is the �rst number not in any previous chain.
Assume r is even, then r > 3, so there exists chains with r and r+ 2 as �rst
non-zero element. r and r+2 is even and hence we can factor out 2 and their
least common multiple will be r(r+2)

2 . But since both r
2 and r+2

2 = r
2 + 1 is

≤ r−1 the least common multiple will be in both chains and hence the only
wedge of chains where all chains are of the same even length is the unitary
case.

Now assume r 6= 3 is odd. Consider r+ 1 and r+ 3. There exists chains
with r + 1 and r + 3 as �rst non-zero element. The least common multiple
of r + 1 and r + 3 is (r+1)(r+3)

2 . Since both r+1
2 and r+3

2 is ≤ r − 1 the least
common multiple will be in both chains and hence there exist no diagram
with all chains of ha same odd length > 3.

When r = 3 the chains will be:
{0, 1, 2}
{0, 3, 6}
{0, 4, 8}
{0, 5, 10}
{0, 9, 18}
. . .

It is clear that this chains will never intersect, because if we continue to take
the next number not in any previous chain, say s, then 2s will clearly not
be in any previous chain. Because of the fundamental theorem of arithmetic
2s 6= 2t if s 6= t.
Proposition 3.7. All diagrams, except for the one with just one chain of
in�nite length (i.e. the Dirichlet convolution), must contain in�nitely many
chains of length 2 or 3.

Proof Assume that the diagram does not contain any chains of length 2
or 3. Let the chain containing 1 have length r. r is �nite, since otherwise we

16



Figure 3.1: Posets of Dirirchlet, unitary and ternary convolution, restricted
to a powers of a single prime

have the Dirichlet case and moreover r ≥ 4, since the diagram doesn't have
chains of length 2 or 3. Then we will have the chains

{0, 1, . . . , r − 1}
{0, r, . . . , sr}
{0, r + 1, . . . , t(r + 1)}
{0, r + 2, . . . , u(r + 2)}
{0, r + 3, . . . , v(r + 3)}
. . .

with s, t, u, v ≥ 3. But then it follows from the proof of proposition 3.6 that
two chains have some element in common, which is a contradiction. In the
same way we can assume that there is only �nitely many chains of length 2
and 3. Then there exist a number, r, such that {0, r, 2r} is the last chain
of length 3 and there exist a number s such that {0, s} is the last chain of
length 2. Take the largest number of r and s. Now we can apply the same
argument as above and get a contradiction.
Proposition 3.8. Let p, q ∈ P, p 6= q. Let 1 ∈ B1 ⊂

{
pi i ≥ 0

}, 1 ∈ B2 ⊂{
qi i ≥ 0

}. Then
B1B2

∼= B1 ×B2,

where the × denotes the Cartesian product of the posets B1 and B2.
Proof The order in B1B2 is de�ned as usual, i.e. paqb ≥ prqs i� pa ≥ pr

and qb ≥ qs. The same order is used in B1 × B2, i.e. (pa, qb) ≥ (pr, qs) i�
pa ≥ pr and qb ≥ qs. De�ne

ϕ : B1B2 → B1 ×B2

prqs 7→ (pr, qs)

17



Since ϕ(pa) = (pa, 1), ϕ is a homomorphism since multiplication in B1 ×B2

is componentwise multiplication. This makes ϕ a bijection. We can also
de�ne the inverse to ϕ

ϕ−1((pr, qs)) = prqs

The inverse is well-de�ned and (pr, qs) ≤ (pn, qm) implies that ϕ((pr, qs)) =
prqs ≤ pnqm = ϕ((pn, qm)) according to the de�nition of order above. Hence
ϕ is an order preserving bijection whose inverse is order preserving and hence
it's a poset isomorphism.

∴ B1B2
∼= B1 ×B2

Proposition 3.9. The poset (N+,≤A) is isomorphic to the in�nite direct
product of the posets (

{
pji j ≥ 0

}
,≤A). Then (N+,≤A) is isomorphic to S.

If n ∈ N+, then the interval [1, n] is isomorphic to a product of �nitely many
�nite chains.

Proof Let n ∈ N+ have the prime factorization n = pa1
1 p

a2
2 · · · pan

n De�ne
ϕ : (N+,≤A)→ ({pj1|j ≥ 0} × {pj2|j ≥ 0} × . . . ,≤A)

ϕ map n to the vector with pai
i on the i:th places and 0 on all others. This

is clearly a bijection. The inverse of ϕ then exists and
(pa1

1 , p
a2
2 , . . . ) ≥ (pb11 , p

b2
2 , . . . )

implies ai ≥ bi for all i ∈ N. Hence
ϕ−1((pa1

1 , p
a2
2 , . . . )) = pa1

1 p
a2
2 · · · ≥ p

b1
1 p

b2
2 · · · = ϕ−1((pb11 , p

b2
2 , . . . ))

Hence ϕ is a poset isomorphism and (N+,≤A) ∼= ({pj1|j ≥ 0} × {pj2|j ≥
0} × . . . ,≤A)

If 1 ≤ n ∈ N then either n is prime or there exists a largest prime number
pk ≤ n. For each prime pi there exists a unique number li ∈ N such that
plii is the largest power of pi less then or equal to n. Then as above we can
de�ne a mapping

ϕ : ([1, n],≤A)→ ({pj1|0 ≤ j ≤ l1} × · · · × {p
j
k|0 ≤ j ≤ lk},≤A)

This mapping is a poset isomorphism according to the above. The number
of chains is clearly �nite and all {pji |0 ≤ j ≤ li} are clearly �nite chains.

Let 1 ∈ W ⊂ N+. We de�ne the zeta function of Γ[W ] to be ζ =∑
n∈W en ∈ Γ[W ], and let the Möbius function be its multiplicative inverse

µ = ζ−1.
Theorem 3.10. µ(pa1

1 · · · par
r ) is (−1)r if all pai

i are primitive, 0 otherwise.

18



Proof Let pa be primitive. Then

µ ∗ ζ(pa) =
∑

d∈A(pa)

µ(d)ζ(
pa

d
) =

∑
d∈A(pa)

µ(d) = µ(1) + µ(pa) = 1 + µ(pa) = 0

which implies that µ(pa) = −1 if pa is primitive. Then, if pa|p2a,
µ ∗ ζ(p2a) =

∑
d∈A(p2a)

µ(d) = µ(1) + µ(pa) + µ(p2a) = 1− 1 + µ(p2a) = 0

It follows by induction that µ(pb) = 0 if pb non-primitive.
Let n = pa1

1 p
a2
2 where both pa1

1 and pa2
2 are primitive. Then∑

d∈A(n)

µ(d) = µ(1) + µ(pa1
1 ) + µ(pa2

2 ) + µ(pa1
1 p

a2
2 ) =

= 1− 1− 1 + µ(pa1
1 p

a2
2 ) = 0

Hence µ(pa1
1 p

a2
2 ) = 1 = (−1)2. Assume that µ(pa1

1 · · · p
ar−1

r−1 ) = (−1)r−1 if all
pai
i are primitive. Let n = pai

1 · · · par
r where all pai

i are primitive. Then
∑

d∈A(n)

µ(d) =
r−1∑
i=1

(
r

i

)
(−1)i + µ(pa1

1 · · · p
ar
r ) = 0

Hence µ(pai
1 · · · par

r ) = (−1)r if all pai
i are primitive.

Let n = p2b
1 p

a
2 where p2b

1 is non-primitive and pa2, pb1 is primitive. Then∑
d∈A(n)

µ(d) = µ(1) + µ(pa2) + µ(pb1) + µ(p2b
1 ) + µ(pb1p

a
2) + µ(p2b

1 p
a
2) =

= 1− 1− 1 + 0 + 1 + µ(p2b
1 p

a
2) = 0

which implies that µ(p2b
1 p

a
2) = 0. Induction over the number of factors gives

that µ(pai
1 · · · par

r ) = 0 if one of the pai
i s is non-primitive. Moreover induction

over the number of non-primitive factors then shows that µ(pai
1 · · · par

r ) = 0
if some of the pai

i s are non-primitive.
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Chapter 4

Ternary convolution

In proposition 3.6 we concluded that the unitary convolution and the Dirich-
let convolution both have the property that a Hasse digram of posets {pi|i ≥
0} has the property that all wedges of chains had the same length. The
proposition said that there were only one more convolution with this prop-
erty. We call this convolution ternary convolution. Since both Dirichlet
convolution and unitary convolution is well-known it might be interesting to
look into this ternary convolution and see what can be said about it. The
ring of arithmetic functions with ternary convolution is obviously isomorphic
to the complete tensor product of countably many copies of C[x]

(x3)
.

Proposition 4.1. A prime power pa is primitive if either a is odd or a = 2αb
where b is odd and α is even.

Proof Ternary convolution is determined by the progressions {0, 1, 2},
{0, 3, 6}, {0, 4, 8}, . . . , {0, s, 2s}, . . . , where s is the next number not in any
previous chain. The primitive prime powers are pn where n is the �rst non-
zero element in some chain. The third element in every chain is divisible by
2, hence all pa with a odd are primitive. Hence if a = 2b with b odd, then
pa is non-primitive. This gives that p22b must be primitive, since 22b can't
be the third number in any chain (because if it were the third number then
2b would be primitive). Continuation in this way gives the result.

Corollary 4.2. The proportion of a such that pa is primitive in the interval
[1, l] is near 2

3 for large l.
Proof In a large interval near 1

2 of the numbers are odd. It is also clear
that near 1

4 is divisible by 4. This discussion leads to the following formulae
1
2

+
1
4
− 1

8
+

1
16
− 1

32
+ · · · = 1

2
+
∞∑
n=2

(
− 1

2
)k
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Since when we add all numbers divisible by 4, we also get those divisible
by 8, which don't give primitive powers of a prime, so therefore we have to
subtract these, and so on. Developing the sum above gives that the number
of a such that pa is primitive is 2

3 in an interval large enough.
In [3] Schinzel formulate a formulae for the inverse function to an invert-

ible function f under unitary convolution. Here we do the same thing for the
ternary convolution. The formulae we give actually works for every regular
convolution, the tricky part is just to factor n into primitive elements. In
proposition 4.3 we show that this can be done under the ternary convolution,
but it is easy to realize that n can be factored into primitive elements in a
unique way with respect to any regular convolution.
Proposition 4.3. Any number n ∈ N has a unique factorization into prim-
itive elements.

Proof Every n ∈ N has a unique prime factorization, n = pa1
1 p

a2
2 · · · p

ak
k .

Then if pai
i is non-primitive one can write pai

i = p
ai
2
i p

ai
2
i where p

ai
2
i must be

primitive. Hence it follows that n can be written as a product of primitive
elements in a unique way.
De�nition 4.4. For a number n ∈ N let υ(n) be the number of primitive
prime powers counted with multiplicity in the factorization of n.
Proposition 4.5. If f(1) = 1 the inverse function of f exists and is given
by the formulae

f−1(1) = 1

f−1(n) =
υ(n)∑
k=1

(−1)k
∑

d1 · · · dk = n
di ∈ A(n), di > 1

k∏
i=1

f(di) for n > 1

Proof The formulae is obviously true for n = 1, thus let n > 1. Then we
have
f ∗ f−1(n) =

∑
d∈A(n)

f(d)f−1(
n

d
) = f−1(n) +

∑
d ∈ A(n)
1 < d < n

f(d)f−1(
n

d
) + f(n) =

=
υ(n)∑
k=1

(−1)k
∑

d1 · · · dk = n
di ∈ A(n), di > 1

k∏
i=1

f(di)+

∑
d ∈ A(n)
1 < d < n

f(d)
υ(n

d
)∑

k=1

(−1)k
∑

d1 · · · dk = n
d

di ∈ A( n
d

), di > 1

k∏
i=1

f(di) + f(n) = 0
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since
∑

d ∈ A(n)
1 < d < n

f(d)
υ(n

d
)∑

k=1

(−1)k
∑

d1 · · · dk = n
d

di ∈ A( n
d

), di > 1

k∏
i=1

f(di)+f(n) = −
υ(n)∑
k=1

(−1)k
∑

d1 · · · dk = n
di ∈ A(n), di > 1

k∏
i=1

f(di)

One of the questions that we hoped to be able to answer about this ring
was what are the nilpotent elements and the zero divisors in the ring. This
work isn't �nished yet, but a result on the way is proposition 4.9. To get
there we need a few lemmas.
Lemma 4.6. 1. If pa is primitive, then epa ∗ epa = ep2a

2. If pa is non-primitive, then epa ∗ epa = 0

3. If a 6= b, then epa ∗ epb = 0

Proof
1.

epa ∗ epa(p2a) =
∑

d1d2 = p2a

di ∈ A(p2a)

epa(d1)epa(d2) =

= epa(p2a)epa(1) + epa(pa)epa(pa) + epa(1)epa(p2a) = 0 + 1 + 0 = 1

2.
epa ∗ epa(p2a) =

∑
d1d2 = p2a

di ∈ A(p2a)

epa(d1)epa(d2) =

= epa(p2a)epa(1) + epa(1)epa(p2a) = 0

3. If a 6= b then pab is either primitive or non-primitive. If pab is primitive,
then

epa ∗ epb(pab) =
∑

d1d2 = pab

di ∈ A(pab)

epa(d1)epb(d2) =

= epa(pab)epb(1) + epa(1)epb(pab) = 0

it follows from the calculations above that epa ∗ epb = 0. If pab is
non-primitive then pab = (p

ab
2 )2 where pab

2 is primitive. Hence
epa∗epb(pab) = epa(pab)ep2a(1)+epa(p

ab
2 )ep2a(p

ab
2 )+epa(1)ep2a(p

ab
2 ) = 0

Lemma 4.7. If n = pa1
1 · · · p

ak
k were all pi are distinct primes, then
en = epa1

1
∗ · · · ∗ epak

k
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Proof One can factor pa1
1 · · · p

ak
k into it's primitive parts, so pa1

1 · · · p
ak
k =

qb11 · · · q
bl
l . If pai

i is non-primitive, then epai
i

= e
p

ai
2

i

∗ e
p

ai
2

i

since

e
p

ai
2

i

∗ e
p

ai
2

i

(pai
i ) =

∑
d∈A(p

ai
i )

e
p

ai
2

i

(d)e
p

ai
2

i

(
n

d
) = 1

Hence
epa1

1
∗ · · · ∗ epak

k
(n) = e

q
b1
1

∗ · · · ∗ e
q

bl
l

(n) =
∑

d1···dl=n

e
q

b1
1

(d1) · · · eqbl
l

(dl) = 1

Lemma 4.8. Let n = pa1
1 · · · p

ak
k and m = qb11 · · · q

bl
l , where pi and qi areprimes. Then

em ∗ en =
{

0 if for some i, j, pi = qj and ai 6= bj or pai
i non-primitive

emn otherwise
Proof This follows directly from Lemma 4.7, the commutativity of the

ring and the properties of the regular three convolution, since if pi = qj and
ai 6= bj for some i, j, then clearly

en ∗ em = · · · ∗ epai
i
∗ · · · ∗ e

p
bj
i

∗ · · · = · · · ∗ 0 ∗ · · · = 0

On the other had if ai = bi but pai
i non-primitive, then

en ∗ em = · · · ∗ epai
i
∗ · · · ∗ epai

i
∗ · · · = · · · ∗ 0 ∗ · · · = 0

Proposition 4.9. In the ring with three-convolution, all elements of poly-
nomial type are nilpotent.

Proof Lemma 4.8 gives that (en)3 = 0 for all n. Hence, since k ∈ N|i|
implies that pi|k and Lemma 4.6 then gives

(fi)3 =
( ∑
k∈N|i|

f(k)ek

)3

= 0

If an element is of polynomial type then f =
∑∞

i=1 fi with all but �nitely
many of the fi's are zero. So, because of the above and the pigeonhole
principle,

f (2N+1) =
( N∑
i=1

fi

)2N+1

= 0

Hence all elements of polynomial type are nilpotent.
Corollary 4.10. All elements of polynomial type are zero divisors in the
ring with ternary convolution.

Proof Let f be of polynomial type. Proposition 4.9 gives that fm = 0
for some m > 1. Hence f ∗ fm−1 = fm−1 ∗ f = 0 and hence f i s a zero
divisor.
Question 4.11. Are all zero divisors of polynomial type?
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Chapter 5

Restrictions to square-free

integers

If W consists of the square-free integers, then the ring Γ[W ] is isomorphic to
the completion of the group ring to the direct sum of countably many Z/2Z.
An alternative description would be to view the ring as the completion of
the free vector space on �nite subsets of N with the multiplication

A ∗B =
{
A ∪B if A ∩B = ∅
0 otherwise

Theorem 5.1. Let W consist of the square-free integers. Then there is only
one regular convolution on Γ[W ].

Proof If p ∈ P then, by Proposition 1.9, A(p) = {1, p}. By Proposition
1.11, if p, q ∈ P then A(pq) = {1, p, q, pq}. Induction gives that if n is square-
free, then A(n) = {1, p ∈ P such that p|n; p, q ∈ P such that pq|n; . . . ; n}.
Hence De�nition 2.1 implies that any convolution on Γ[W ] is de�ned as

em ∗ en =
{
emn if mn square-free
0 otherwise

But this is a unique de�nition and hence there exist only one regular convo-
lution on Γ[W ]. mn squarefree implies that there exist no p ∈ P such that
p|m and p|n, i.e. (m,n) = 1.
Corollary 5.2. The convolution on Γ[W ] can be viewed as the unitary con-
volution on the square-free integers.

This means that the ring Γ[W ] share many properties with the ring Γ
with unitary convolution. For example all elements of polynomial type are
nilpotent.
Conjecture 5.3. All zero divisors and nilpotent elements in Γ[W ] are of
polynomial type.
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Chapter 6

Restrictions to [n]

Let A be some regular convolution, and let W ⊂ N+ be a �nite subset
closed under taking A-divisors. We will be mostly interseted in the case
W = [n] = {1, 2, . . . , n}.

The ring Γ[W ] is a monomial ring, i.e. a quotient of a polynomial ring
(on �nitely many variables) with a monomial ideal.

Henceforth we assume A �xed and suppress it from notations. Let PP[W ]
be the primitive prime powers in W .
Theorem 6.1. Γ[W ] = C[{ eq q∈PP[W ] }]

IW +JW
, where IW , JW are monomial ideals,

and where IW = I ∩ { eq q ∈ PP[W ] }, where I is the de�ning ideal of Γ =
C[[eq ]]
I .
Proof It is clear that C[{eq |q∈PP[W ]}]

IW
is a subvector space of C[[eq ]]

I . De�ne

ϕ :
C[{eq|q ∈ PP[W ]}]

IW
→ Γ[W ]

such that
ϕ(en) =

{
en if en ∈ Γ[W ]
0 otherwise

This is a homomorphism, since if em, en ∈ Γ[W ], emn /∈ Γ[W ] then 0 =
ϕ(emn) = ϕ(em) ∗ ϕ(en) = em ∗ en = 0. Ker(ϕ) is clearly a monomial ideal.
Then JW = Ker(ϕ) so

Γ[W ] =
C[{eq|q ∈ PP[W ]}]

IW + JW

Equivalently, W is identi�ed with { ew w ∈W } and is regarded as a
multicomplex on PP[W ], and Γ[W ] as the multicomplex ring on W .
De�nition 6.2. A facet of W is an element which is maximal w.r.t ≤A.
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De�nition 6.3. The socle of a homogeneous quotient R = C[x1, . . . , xr]/I
is the set

soc(R) = {f ∈ R|fg = 0 for all g ∈m},

where m = (x1, . . . , xr) is the unique graded maximal ideal in R.
Lemma 6.4. The socle is a graded ideal.

Proof It is obvious that the socle is an ideal. Any f ∈ R can be de-
composed into homogenous components, f = f1 + f2 + · · · + fd. Take
f ∈ soc(R), then since fg = 0 for all g ∈m we have that (f1 + · · ·+fd)xi =
f1xi + · · ·+ fdxi = 0 for all i. This implies that fjxi = 0 for all 1 ≤ j ≤ d,
since f1xi, . . . , fdxi are all homogenous of di�erent degrees or 0.

It is obvious that any f = f1 + · · ·+ fd such that fn ∈ soc(R), 1 ≤ n ≤ d
is in soc(R). Hence the socle is a graded ideal.
Lemma 6.5. The element ew ∈ Γ[W ] is in the socle i� w ∈ W is a facet.
These elements span the socle as a vector space.

Proof n ≤ m if and only if em = en ∗ ep for some p ∈ W . Hence w is a
facet if and only if for all v ∈ W \ {1}, ev ∗ ew 6= ek, k ∈ W , i.e. ev ∗ ew = 0
for all v ∈W \ {1}. Hence w facet implies ew ∈ soc(Γ[W ]).

Assume ew ∈ soc(Γ[W ]). m is generated by {ev| v ∈ PP[W ]}, which
means that it is also generated by the set {ev| v ∈ W \ {1}}. Then, for all
v ∈W \{1}, ew ∗ ev = 0. Hence either vw /∈W or w /∈ A(vw). In both cases
we have that ev ∗ ew /∈ Γ[W ]. Hence w is a facet.

That these elements then span the socle as a vector space is obvious.
Lemma 6.6. For any w ∈ W , let JJw be the ideal in S = C[{eq | q∈PP[W ]}]

IWgenerated by the set { ev ∈ Γ[W ] v 6≤ w }. Then the ideal JW is the intersec-
tion of all ideals JJw when w ranges over all facets, in S.

Proof The ideal ⋂
w facet JJw is generated by all eq such that q 6≤ w for

any facet w. An equivalent formulation would be to say that the ideal is
generated by eq such that q /∈W .
Example 6.7. W = [10]. If A is Dirichlet then PP[W ] = {2, 3, 5, 7}, W
is the multicomplex {e2, e3, e22, e5, e2e3, e7, e32, e23, e2e5}, and so the multicom-
plex ring is

Γ[W ] =
C[e2, e3, e5, e7]

(e42, e
3
2e3, e

2
2e5, e2e7, e

3
3, e3e5, e3e7, e

2
5, e5e7, e

2
7)
.

There is no IW since I = (0). The facets are 10, 9, 8, 7, 6 with corresponding
ideals JJ10 = (e3, e22, e7), JJ9 = e2, e5, e7), JJ8 = (e3, e5, e2e3, e7), JJ7 =
(e2, e3, e5), JJ6 = (e22, e5, e7, e

2
3).
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Figure 6.1: W = 10, Dirichlet convolution

Example 6.8. If A is unitary convolution, W = [10], then PP[W ] =
{2, 3, 4, 5, 7, 8, 9}, W is the multicomplex {e2, e3, e4, e5, e2e3, e7, e8, e9, e2e5},

IW = (e22, e2e4, e2e8, e
2
3, e3e9, e

2
4, e4e8, e

2
5, e

2
7, e

2
8, e

2
9),

the restriction of I to this ring, and
JW = (e2e7, e2e9, e3e5, e3e7, e3e8, e4e5,

e4e7, e4e9, e5e7, e5e8, e5e9, e7e8, e7e9, e8e9).

The facets are 10, 9, 8, 7, 6, 4, with corresponding ideals JJ10 = (e3, e4, e7, e8, e9),JJ9 =
(e2, e3, e4, e5, e7, e8), JJ8 = (e2, e3, e4, e5, e7, e9),JJ7 = (e2, e3, e4, e5, e8, e9),
JJ6 = (e4, e5, e7, e8, e9), JJ4 = (e2, e3, e5, e7, e8, e9) .

2 3 4 5 7 8 9

6 10

Figure 6.2: W = 10, unitary convolution

Example 6.9. If A is ternary convolution, W = [10], then PP[W ] =
{2, 3, 5, 7, 8}, W is the multicomplex {e2, e3, e22, e5, e2e3, e7, e8, e23, e2e5},

IW = (e32, e
3
3, e2e8)

and
JW = (e22e3, e2e7, e3e5, e2e

2
3, e

2
2e5, e3e7, e3e8, e

2
5, e5e7, e2e3e7, e7e8, e2e5e7)
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The facets are 10, 9, 8, 7, 6, 4, with corresponding ideals JJ10 = (e3, e22, e7, e8, e
2
3),

JJ9 = (e2, e5, e2e3, e7, e8), JJ8 = (e2, e3, e5, e7), JJ7 = (e2, e3, e5, e8), JJ6 =
(e22, e5, e7, e8, e

2
3, e2e5), JJ4 = (e3, e5, e2e3, e7, e8, e2e5)

2 3 5 7 8

6 10

4 9

Figure 6.3: W = 10, ternary convolution
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