NUMBER THEORY, Talteori 6 hp

March 14, 2013, 14–18

Matematiska institutionen, Linköpings universitet.

Examinator: Leif Melkersson

Inga hjälpmedel är tillåtna!(For example no pocketcalculators are allowed.)

You may write in swedish, if you do this consistently.

You are rewarded at most 3 points for each of the 6 problems.

To get grade 3, 4 or 5, you need respectively 7, 11 and 14 points.

- (1) (a) Find the order of 7 modulo 37.
 - (b) Find the (least nonnegative) residue when 7^{1000} is divided by 37.
- (2) Decide if the number n can be written as the sum of two squares of integers $n = x^2 + y^2$ and when this is possible how many such ordered pairs (x, y) of integers (positive, zero or negative) there are, when
 - (a) n = 81000
 - (b) n = 270
- (3) (a) Compute the Jacobi symbol

$$\left(\frac{18}{143}\right)$$

(b) Is the congruence $x^2 \equiv 18 \pmod{143}$ solvable?

- (4) Find a primitive root modulo 121.
- (5) Find the two smallest positive solutions of the Pell equation $x^2 30y^2 = 1$
- (6) Solve the congruence $x^3 + 2x 7 \equiv 0 \pmod{100}$.