(SKETCHES OF) SOLUTIONS, NUMBER THEORY,

 TATA 54, 2013-03-14(1) (a) $\operatorname{ord}_{37} 7$ divides $36=2^{2} 3^{2} . \quad 7^{2}=49 \equiv 12(\bmod 37)$, $7^{3}=7 \cdot 7^{2} \equiv 7 \cdot 12 \equiv 84 \equiv 10(\bmod 37), \quad 7^{4}=7 \cdot 7^{3} \equiv$ $7 \cdot 10 \equiv 70 \equiv-4(\bmod 37), \quad 7^{6}=7^{2} \cdot 7^{4} \equiv 12(-4) \equiv$ $-48 \equiv-11(\bmod 37), \quad 7^{9}=7^{3} \cdot 7^{6} \equiv 10(-11) \equiv-110 \equiv$ $1(\bmod 37) . \quad$ Hence $\operatorname{ord}_{37} 7=9$.
(b) $7^{1000}=7^{999} \cdot 7=\left(7^{9}\right)^{111} \cdot 7 \equiv 1^{111} \cdot 7 \equiv 7(\bmod 37)$.

ANSWER: (a): 9 (b): 7
(2) We can read off from the prime factorization of n if n can be written as the sum of two squares and the number of ways it can be done.
(a) $81000=2^{3} 3^{4} 5^{3}$. Yes and that in $4(3+1)=16$ ways.
(b) Since $270=2 \cdot 3^{3} \cdot 5$ and 3 occurs to an odd power, the number 270 cannot be written as the sum of two squares.
ANSWER: (a): Yes, in 16 ways. (b): No
(3) (a) $143=11 \cdot 13,\left(\frac{18}{143}\right)=\left(\frac{18}{11}\right)\left(\frac{18}{13}\right),\left(\frac{18}{11}\right)=\left(\frac{3^{2}}{11}\right)\left(\frac{2}{11}\right)=\left(\frac{2}{11}\right)=$ -1 . Where for the last computation we used that $11 \equiv 3$ $(\bmod 8)$. Similarly we get $\left(\frac{18}{13}\right)=\left(\frac{2}{13}\right)=-1$, since $13 \equiv 5$ $(\bmod 8)$. Hence $\left(\frac{18}{143}\right)=(-1)(-1)=1$.
(b) No, since if x satisfies $x^{2} \equiv 18(\bmod 143)$, then x also satisfies $x^{2} \equiv 18(\bmod 11)$. But the last congruence has no solution, since the Legendre symbol $\left(\frac{18}{11}\right)=-1$.
ANSWER: (a): 1 (b): No
(4) We first find a primitive root modulo 11. Since $\operatorname{ord}_{11} 2 \mid \varphi(11)=$ 10 , the only thing we have to exhibit is $2^{5} \equiv-1$, in order to conclude that $\operatorname{ord}_{11} 2=10$. Let $n=\operatorname{ord}_{121} 2$. Since $2^{n} \equiv 1$ $\left(\bmod 11^{2}\right)$ implies that $2^{n} \equiv 1(\bmod 11)$, we get that $10 \mid n$. But n is also a divisor of $\varphi(11)=11 \cdot 10$ Hence $n=10$ or $n=110$. But $2^{10}=2^{7} \cdot 2^{3}=128 \cdot 8=7 \cdot 8=56 \not \equiv 1(\bmod 121)$. Thus $n=110$ and 2 is a primitive root modulo 121 .

ANSWER: E.g. 2 is a primitive root modulo 121.
(5) We first compute the infinite simple continued fraction of $\alpha_{0}=$ $\sqrt{30}$.. Since $5^{2}<30<6^{2}, 5<\sqrt{30}<6$ and $a_{0}=[\sqrt{30}]=5$. $\alpha_{1}=\frac{1}{\alpha_{0}-a_{0}}=\frac{\sqrt{30}+5}{5} .2=\frac{5+5}{5}<\alpha_{1}<\frac{6+5}{5}<3$. Hence $a_{1}=2$. $\alpha_{2}=\frac{1}{\alpha_{1}-a_{1}}=\sqrt{30}+5 . a_{2}=5+5=10$. We then get $\alpha_{3}=\alpha_{1}$. Hence $\sqrt{30}=[5 ; \overline{2,10}]$. The period length is even, namely 2 .

Then the positive solutions of the diophantine equation $x^{2}-$ $30 y^{2}=1$ will be $\left(x_{j}, y_{j}\right)=\left(p_{2 j-1}, q_{2 j-1}\right)$ for $j=1,2,3, \ldots$. The least one is obtained from $\frac{p_{1}}{q_{1}}=[5 ; 2]=5+\frac{1}{2}=\frac{11}{2}$. The next one from $\frac{p_{3}}{q_{3}}=[5 ; 2,10,2]=\frac{241}{44}$, and therefore the two first solutions are $x=11, y=2$ and $x=241, y=44$.

Alternative solution:
There is no solution with $y=1$. But it is easily seen that $x_{1}=11, y_{1}=2$ is a solution and thus the smallest one. The next solution $\left(x_{2}, y_{2}\right)$ is computed using the formula $x_{2}+y_{2} \sqrt{30}=$ $\left(x_{1}+y_{1} \sqrt{30}\right)^{2}$.

ANSWER: The two smallest solutions are $(x, y)=(11,2)$ and $(x, y)=(241,44)$.
(6) Let $f(x)=x^{3}+2 x-7$. Then $f(x) \equiv 0(\bmod 100)$ is equivalent to that both $f(x) \equiv 0(\bmod 4)$ and $f(x) \equiv 0(\bmod 25)$ hold. Computing $f(x)$ for $x=0,1,2,3$ we get $-7,-4,5,26$ resp. Hence the solutions of $f(x) \equiv 0(\bmod 4)$ are $x \equiv 1(\bmod 4)$. Then we find the solutions of $f(x) \equiv 0(\bmod 5)$. Doing as above we get the solutions $x \equiv 2(\bmod 5)$ and $x \equiv 4(\bmod 5)$.
Since $f^{\prime}(4)=50 \equiv 0(\bmod 5)$ and $f(4)=65 \not \equiv 0\left(\bmod 5^{2}\right)$ there are no solutions of $f(x) \equiv 0\left(\bmod 5^{2}\right)$ with $x \equiv 4(\bmod 5)$. Let us find the solutions of the form $x=2+5 t . f(2+5 t)=(2+$ $5 t)^{3}+2(2+5 t)-7=5+14 \cdot 5 t+5\left(6 t^{2}\right)+5^{3} t^{3} \equiv 5+(15-1) 5 t \equiv$ $5(1-t)\left(\bmod 5^{2}\right)$ Hence $f(x) \equiv 0\left(\bmod 5^{2}\right)$ is equivalent to $1-t \equiv 0(\bmod 5)$ i.e. $t=1+5 s$ Therefore these solutions are of the form $x=2+5(1+5 s)=7+25 s$ We find out when also $7+25 s \equiv 1(\bmod 4)$. We get $s \equiv 2(\bmod 4)$. Hence the solutions of $f(x) \equiv 0(\bmod 100)$ are $x=7+25(2+4 n)=57+100 n$. ANSWER: $x \equiv 57(\bmod 100)$.

