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(1) (a) ord37 7 divides 36 = 2232. 72 = 49 ≡ 12 (mod 37),
73 = 7 · 72 ≡ 7 · 12 ≡ 84 ≡ 10 (mod 37), 74 = 7 · 73 ≡
7 · 10 ≡ 70 ≡ −4 (mod 37), 76 = 72 · 74 ≡ 12(−4) ≡
−48 ≡ −11 (mod 37), 79 = 73 · 76 ≡ 10(−11) ≡ −110 ≡
1 (mod 37). Hence ord37 7 = 9.

(b) 71000 = 7999 · 7 = (79)111 · 7 ≡ 1111 · 7 ≡ 7 (mod 37).
ANSWER: (a): 9 (b): 7

(2) We can read off from the prime factorization of n if n can be
written as the sum of two squares and the number of ways it
can be done.
(a) 81000 = 233453. Yes and that in 4(3 + 1) = 16 ways.
(b) Since 270 = 2 · 33 · 5 and 3 occurs to an odd power, the

number 270 cannot be written as the sum of two squares.
ANSWER: (a): Yes, in 16 ways. (b): No

(3) (a) 143 = 11 · 13, ( 18
143

) = (18
11

)(18
13

), (18
11

) = (3
2

11
)( 2

11
) = ( 2

11
) =

−1. Where for the last computation we used that 11 ≡ 3
(mod 8). Similarly we get (18

13
) = ( 2

13
) = −1, since 13 ≡ 5

(mod 8). Hence ( 18
143

) = (−1)(−1) = 1.
(b) No, since if x satisfies x2 ≡ 18 (mod 143), then x also

satisfies x2 ≡ 18 (mod 11). But the last congruence has
no solution, since the Legendre symbol (18

11
) = −1.

ANSWER: (a): 1 (b): No
(4) We first find a primitive root modulo 11. Since ord11 2 | ϕ(11) =

10, the only thing we have to exhibit is 25 ≡ −1, in order to
conclude that ord11 2 = 10. Let n = ord121 2. Since 2n ≡ 1
(mod 112) implies that 2n ≡ 1 (mod 11), we get that 10 | n.
But n is also a divisor of ϕ(11) = 11 · 10 Hence n = 10 or
n = 110. But 210 = 27 ·23 = 128 ·8 = 7 ·8 = 56 6≡ 1 (mod 121).
Thus n = 110 and 2 is a primitive root modulo 121.

ANSWER: E.g. 2 is a primitive root modulo 121.
(5) We first compute the infinite simple continued fraction of α0 =√

30.. Since 52 < 30 < 62, 5 <
√

30 < 6 and a0 = [
√

30] = 5.

α1 = 1
α0−a0 =

√
30+5
5

. 2 = 5+5
5
< α1 <

6+5
5
< 3. Hence a1 = 2.

α2 = 1
α1−a1 =

√
30 + 5. a2 = 5 + 5 = 10. We then get α3 = α1.

Hence
√

30 = [5; 2, 10]. The period length is even, namely 2.
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Then the positive solutions of the diophantine equation x2 −
30y2 = 1 will be (xj, yj) = (p2j−1, q2j−1) for j = 1, 2, 3, . . . . The
least one is obtained from p1

q1
= [5; 2] = 5 + 1

2
= 11

2
. The next

one from p3
q3

= [5; 2, 10, 2] = 241
44

, and therefore the two first

solutions are x = 11, y = 2 and x = 241, y = 44.
Alternative solution:
There is no solution with y = 1. But it is easily seen that

x1 = 11, y1 = 2 is a solution and thus the smallest one. The next
solution (x2, y2) is computed using the formula x2 + y2

√
30 =

(x1 + y1
√

30)2.
ANSWER: The two smallest solutions are (x, y) = (11, 2)

and (x, y) = (241, 44).
(6) Let f(x) = x3 + 2x − 7. Then f(x) ≡ 0 (mod 100) is equiv-

alent to that both f(x) ≡ 0 (mod 4) and f(x) ≡ 0 (mod 25)
hold. Computing f(x) for x = 0, 1, 2, 3 we get−7,−4, 5, 26 resp.
Hence the solutions of f(x) ≡ 0 (mod 4) are x ≡ 1 (mod 4).
Then we find the solutions of f(x) ≡ 0 (mod 5). Doing as
above we get the solutions x ≡ 2 (mod 5) and x ≡ 4 (mod 5).

Since f ′(4) = 50 ≡ 0 (mod 5) and f(4) = 65 6≡ 0 (mod 52)
there are no solutions of f(x) ≡ 0 (mod 52) with x ≡ 4 (mod 5).
Let us find the solutions of the form x = 2+5t. f(2+5t) = (2+
5t)3+2(2+5t)−7 = 5+14·5t+5(6t2)+53t3 ≡ 5 + (15− 1)5t ≡
5(1− t) (mod 52) Hence f(x) ≡ 0 (mod 52) is equivalent to
1− t ≡ 0 (mod 5) i.e. t = 1 + 5s Therefore these solutions are
of the form x = 2 + 5(1 + 5s) = 7 + 25s We find out when also
7 + 25s ≡ 1 (mod 4). We get s ≡ 2 (mod 4). Hence the solu-
tions of f(x) ≡ 0 (mod 100) are x = 7+25(2+4n) = 57+100n.
ANSWER: x ≡ 57 (mod 100).


