Kurskod: TATA 54
Provkod: TEN 1
NUMBER THEORY, Talteori 6 hp
August 30, 2014, 14-18.
Matematiska institutionen, Linköpings universitet.
Examinator: Leif Melkersson
Inga hjälpmedel är tillåtna!(For example books or pocket calculators are not allowed!)
You may write in swedish, if you do this consistently.
You are rewarded at most 3 points for each of the 6 problems.
To get grade 3,4 or 5 , you need respectively 7,11 and 14 points.
(1) What is the last digit in the number $N=47^{171}$?
(2) Can the number n be written as the sum of two squares of integers when
(a) $n=1230$
(b) $n=1233$
(3) (a) Compute the Jacobi symbol $\left(\frac{35}{141}\right)$.
(b) Does the congruence $x^{2} \equiv 35(\bmod 141)$ have a solution?
(4) Show that 8911 is a Carmichial number !
(Hint: In order to quickly find the prime factorization of 8911 it can be helpful first to factorize 8910 into primes.)
(5) (a) Show that 5 is a primitive root modulo 47 .
(b) Find all positive integers x, such that $5^{3 x} \equiv 16(\bmod 47)$.
(6) Let $\sigma(m)=\sum_{d \mid m} d$ be the sum of divisors function.
(a) Let $n=3^{k} 5^{l}$, where k, l are positive integers. Show that

$$
\frac{\sigma(n)}{2 n}<1
$$

(b) Show that for every prime number $p \geq 5$ and for all positive integers k and l, that the number $n=3^{k} p^{l}$ is not a perfect number, i.e. $\sigma(n) \neq 2 n$

