Kurskod: TATA 54
Provkod: TEN 1
NUMBER THEORY, Talteori 6 hp
August 29, 2015, 14-18.
Matematiska institutionen, Linköpings universitet.
Examiner: Leif Melkersson
Inga hjälpmedel är tillåtna! (For example books or pocket calculators are not allowed!)
You may write in Swedish, if you do this consistently.
You are rewarded at most 3 points for each of the 6 problems.
To get grade 3,4 or 5 , you need respectively 7,11 and 14 points.
(1) Show that 21 is a primitive root modulo 23 .
(2) Can n be written as the sum of the squares of two integers, when
(a) $n=605$
(b) $n=697$
(c) $n=711$
(3) Does the congruence $x^{4} \equiv 4(\bmod 103)$ have a solution?
(4) (a) Show that 5 is a primitive root modulo 17 .
(b) Make a table of indices $\operatorname{ind}_{5} a, a=1,2, \ldots 16$.
(c) Find all integers $x \geq 0$, such that $8^{x}+13 \equiv 0(\bmod 17)$.
(5) Show that 561 is an Euler pseudoprime to the base 35.
(6) (a) Find the continued fraction expansion of $\sqrt{7}$.
(b) Find a rational number r, such that $|\sqrt{7}-r|<\frac{1}{10^{2}}$.

