(SKETCHES OF) SOLUTIONS, NUMBER THEORY,

 TATA 54, 2015-08-29(1) Observe that $21 \equiv-2(\bmod 23)$ and we show that -2 is a primitive root modulo 23. Now $\varphi(23)=22=2 \cdot 11$. Since ord $-2 \mid 23$, we have to exclude that $(-2)^{11} \equiv 1(\bmod 23)$. First $(-2)^{8}=256 \equiv 3(\bmod 23)$, hence $(-2)^{11}=(-2)^{3} \cdot(-2)^{8} \equiv$ $-8 \cdot 3 \equiv-24 \equiv-1(\bmod 23)$
(2) A positive integer is the sum of two squares if and only if each prime divisor, which is $\equiv 3(\bmod 4)$ occurs to an even power in the prime factorization.
(a) $605=5 \cdot 121=5 \cdot 11^{2}$
(b) $697=17 \cdot 41$
(c) $711=3^{2} \cdot 79$

ANSWER: Only the two first ones.
(3) The number 103 is a prime number. $x^{4} \equiv 4(\bmod 103) \Longleftrightarrow$ $\left(x^{2}-2\right)\left(x^{2}+2\right) \equiv 0(\bmod 103) \Longleftrightarrow x^{2}-2 \equiv 0(\bmod 103)$ or $x^{2}+2 \equiv 0(\bmod 103)$. The first congruence congruence is equivalent to $x^{2} \equiv 2(\bmod 103)$, which has solutions, since the Legendre symbol $\left(\frac{2}{103}\right)=1$. Note that $103 \equiv-1(\bmod 8)$. ANSWER: Yes.
(4) (a) Since $\varphi(17)=16=2^{4}, \operatorname{ord}_{27} 5$ divides 2^{4}. The following computations will show that 5 has order 16 modulo 17 and thus is a primitive root. $5^{2} \equiv 8(\bmod 17), 5^{4} \equiv 8^{2} \equiv 64 \equiv$ $-4(\bmod 17), 5^{8} \equiv(-4)^{2} \equiv 16 \equiv-1(\bmod 17)$.
(b) By definition $\operatorname{ind}_{5} a$ is the integer k, such that $5^{k} \equiv a$ $(\bmod 17)$ and $1 \leq k \leq 16$. E.g $5^{3} \equiv 6(\bmod 17)$ and thus $\operatorname{ind}_{5} 6=3$. In order to find your table of indices just compute the least positive residues of the powers of 5. Some indices can be more quickly found by using the logarithmic laws for indices applied to previously computed ones. All your computations should of course be presented.
(c) $8^{x}+18 \equiv 0(\bmod 17) \Leftrightarrow 8^{x} \equiv-13(\bmod 17)$ $\Leftrightarrow 8^{x} \equiv 4(\bmod 17) \Leftrightarrow x \operatorname{ind}_{5} 8 \equiv \operatorname{ind}_{5} 4(\bmod 16)$ $\Leftrightarrow 2 x \equiv 12(\bmod 16) \Leftrightarrow x \equiv 6(\bmod 8)$ $\Leftrightarrow x=6+8 n, n=0,1,2, \ldots$
ANSWER: (b): $16,6,13,12,1,3,15,2,10,7,11,9,4,5,14,8$. (c): $x=6+8 n, n=0,1,2, \ldots$
(5) The number 561 is composite; $561=11 \cdot 51=3 \cdot 11 \cdot 17$ We have also to show that

$$
35^{\frac{561-1}{2}} \equiv\left(\frac{35}{561}\right)
$$

Now $35 \equiv 2(\bmod 3), 35 \equiv 2(\bmod 11)$ and $35 \equiv 1(\bmod 17)$. $\left(\frac{35}{561}\right)=\left(\frac{35}{3}\right)\left(\frac{35}{11}\right)\left(\frac{35}{17}\right)=\left(\frac{2}{3}\right)\left(\frac{2}{11}\right)\left(\frac{1}{17}\right)=(-1) \cdot(-1) \cdot 1=1,35^{280} \equiv$ $(-1)^{280} \equiv 1(\bmod 3), 35^{280} \equiv 1(\bmod 11)$, by Fermat's little theorem , since $10 \mid 280.35^{280} \equiv 1^{280}(\bmod 17)$ Hence we can conclude that the desired congruence is valid.
(6) (a) We compute the periodic continued fraction expansion of $\alpha=\sqrt{7}$, using the algorithm

$$
\begin{gathered}
\alpha_{0}=\alpha \\
a_{n}=\left[\alpha_{n}\right] \\
\alpha_{n+1}=\frac{1}{\alpha_{n}-a_{n}}
\end{gathered}
$$

To see how such computations (which I do not write out here) are performed, see the solutions of other exams. It turns out to be $[2 ; \overline{1,1,1,4}]$.
(b) The convergents

$$
C_{k}=\frac{p_{k}}{q_{k}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]
$$

satisfy the inequalities

$$
\left|\alpha-C_{k}\right|<\frac{1}{q_{k}^{2}}
$$

Testing with $k=4$, we get

$$
C_{4}=[2 ; 1,1,1,4]=2+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}}
$$

We get $C_{4}=\frac{37}{14}$ and thus

$$
\left|\sqrt{7}-\frac{37}{14}\right|<\frac{1}{14^{2}}
$$

Alternatively use the algorithm for computing the numbers p_{k} and q_{k}, see the textbook. ANSWER:(a) $[2 ; \overline{1,1,1,4}]$, (b) For example $r=\frac{37}{14}$

