Kurskod: TATA 54
Provkod: TEN 1
NUMBER THEORY, Talteori 6 hp June 10, 2015, 08-12.
Matematiska institutionen, Linköpings universitet.
Examinator: Leif Melkersson
Inga hjälpmedel är tillåtna! (For example books or pocket calculators are not allowed!)
You may write in Swedish, if you do this consistently.
You are rewarded at most 3 points for each of the 6 problems.
To get grade 3,4 or 5 , you need respectively 7,11 and 14 points.
(1) (a) How many (incongruent) primitive roots does the prime number 113 have?
(b) Show that 2 is not a primitive root modulo 113.
(2) Factorize the Gaussian integer $11-8 i$ into Gaussian primes !
(3) Factorize the number $5^{12}-1$ into prime numbers !
(4) (a) Compute the Jacobi symbol

$$
\left(\frac{28}{143}\right)
$$

(b) Decide wether the congruence $x^{2} \equiv 28(\bmod 143)$ is solvable or not!
(5) (a) Show that the diophantine equation $x^{2}-7 y^{2}=-1$ has no solutions !
(b) Let n be a positive integer, such that $p \mid n$ for some prime number p with $p \equiv 3(\bmod 4)$. Show that the diophantine equation $x^{2}-n y^{2}=-1$ has no solutions!
(6) (a) Show that

$$
n \sum_{d \mid n} d^{p-2} \equiv \sigma(n) \quad(\bmod p)
$$

for each prime number p, which is not a prime divisor of n. Here $\sigma(n)$ is the sum of the divisors function.
(b) Show that if n is a perfect number and p is a prime not dividing n, then

$$
\sum_{d \mid n} d^{p-2} \equiv 2 \quad(\bmod p)
$$

