
(SKETCHES OF) SOLUTIONS, NUMBER THEORY,
TATA 54, 2015-06-10

(1) (a) ϕ(ϕ(113)) = ϕ(112) = ϕ(24 · 7) = 23 · 6 = 48.
(b) The order of 2 modulo 113 is a divisor of 112 = 24 · 7.

27 = 128 ≡ 128 ≡ 15 (mod 113), 214 ≡ 152 ≡ 225 ≡ −1
(mod 113), 228 ≡ 1 (mod 113). Therefore the order of 2
must divide 28 and it is not 1, 2, 4, 7 or 14, so it must be
28. Hence it is not a primitive root.

ANSWER: (a): 48
(2) The norm of a gaussian prime dividing α = 11 − 8i must be

a divisor of the norm of α, i.e of 185 = 5 · 37. The norm of
π = 2− i is 5 and since 5 is a (rational) prime, π is a gaussian
prime. Let us test if it divides α. Yes, 11−8i

2−i = 6− i. Also 6− i
is a gaussian prime, since its norm is the prime number 37.

ANSWER: (2− i)(6− i)
(3) 512−1 = (56−1)(56+1), 56−1 = (53−1)(53+1) = (5−1)(52+

5+1)(5+1)(52−5+1) = 4 ·31 ·6 ·21. 56+1 = 253+1 = (25+
1)(252−25+1) = 2·13·601. Hence 512−1 = 24·32·7·13·31·601. It
remains to show that 601 is a prime number. Since

√
601 < 25,

we have just to show that no prime less than and equal to 23
divides 601 = 252−25+1 = 25·24+1. This is evident for 2, 3, 5.
601 ≡ 4 · 3 + 1 ≡ 13 (mod 7), 601 ≡ 1− 0 + 6 ≡ 7 (mod 11),
601 ≡ (−1)(−2)+1 ≡ 3 (mod 13), 601 ≡ 8·7+1 ≡ 4 (mod 17),
601 ≡ 6 · 5 + 1 ≡ 12 (mod 19), 601 ≡ 2 · 1 + 1 ≡ 3 (mod 23).

ANSWER: (a): 24 · 32 · 7 · 13 · 31 · 601.
(4) (a) We use the reciprocity law for the Jacobi symbol, observing

that 143 ≡ 7 ≡ 3 (mod 4).
( 28
143

) = ( 7
143

) = −(143
7
) = −(3

7
) = (7

3
) = (1

3
) = 1

(b) But 143 = 11 · 13 is composite, so we cannot use that
the Jacobisymbol is 1, in order to conclude that the con-
gruence is solvable. However, since the Legendre symbol
(28
13
) = ( 2

13
) = −1, on the contrary the congruence has no

solutions.
ANSWER: (a) 1 (b): No!

(5) (a) can be solved by expanding
√
7 in a continued fraction and

noting that its periodlength is even. However it is a special
case of (b); If there are integers x, y, such that x2 − ny = −1,
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then the congruence x2 ≡ −1 (mod p) has a solution, for each
prime p, dividing n. But when p ≡ 3 (mod 4), it cannot have
a solution!

(6) Evidently we should use Fermat’s litle theorem.
n
∑

d|n d
p−2 =

∑
d|n

n
d
dp−1 ≡

∑
d|n

n
d
· 1 ≡

∑
d|n d ≡ σ(n)

(mod p), since dp−1 ≡ 1 (mod p) for each divisor d of n, when
the prime p does not divide n. If n is a perfect number, then
σ(n) = 2n. Hence from (a) we get that n

∑
d|n d

p−2 ≡ 2n

(mod p). Since (n, p) = 1, we can cancel p and we get the
congruence in (b).


