(SKETCHES OF) SOLUTIONS, NUMBER THEORY,

 TATA 54, 2015-06-10(1) (a) $\varphi(\varphi(113))=\varphi(112)=\varphi\left(2^{4} \cdot 7\right)=2^{3} \cdot 6=48$.
(b) The order of 2 modulo 113 is a divisor of $112=2^{4} \cdot 7$. $2^{7}=128 \equiv 128 \equiv 15(\bmod 113), 2^{14} \equiv 15^{2} \equiv 225 \equiv-1$ $(\bmod 113), 2^{28} \equiv 1(\bmod 113)$. Therefore the order of 2 must divide 28 and it is not $1,2,4,7$ or 14 , so it must be 28. Hence it is not a primitive root.

ANSWER: (a): 48
(2) The norm of a gaussian prime dividing $\alpha=11-8 i$ must be a divisor of the norm of α, i.e of $185=5 \cdot 37$. The norm of $\pi=2-i$ is 5 and since 5 is a (rational) prime, π is a gaussian prime. Let us test if it divides α. Yes, $\frac{11-8 i}{2-i}=6-i$. Also $6-i$ is a gaussian prime, since its norm is the prime number 37 .

ANSWER: $(2-i)(6-i)$
(3) $5^{12}-1=\left(5^{6}-1\right)\left(5^{6}+1\right), 5^{6}-1=\left(5^{3}-1\right)\left(5^{3}+1\right)=(5-1)\left(5^{2}+\right.$ $5+1)(5+1)\left(5^{2}-5+1\right)=4 \cdot 31 \cdot 6 \cdot 21.5^{6}+1=25^{3}+1=(25+$ 1) $\left(25^{2}-25+1\right)=2 \cdot 13 \cdot 601$. Hence $5^{12}-1=2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \cdot 31 \cdot 601$. It remains to show that 601 is a prime number. Since $\sqrt{601}<25$, we have just to show that no prime less than and equal to 23 divides $601=25^{2}-25+1=25 \cdot 24+1$. This is evident for $2,3,5$. $601 \equiv 4 \cdot 3+1 \equiv 13(\bmod 7), 601 \equiv 1-0+6 \equiv 7(\bmod 11)$, $601 \equiv(-1)(-2)+1 \equiv 3(\bmod 13), 601 \equiv 8 \cdot 7+1 \equiv 4(\bmod 17)$, $601 \equiv 6 \cdot 5+1 \equiv 12(\bmod 19), 601 \equiv 2 \cdot 1+1 \equiv 3(\bmod 23)$.

ANSWER: (a): $2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \cdot 31 \cdot 601$.
(4) (a) We use the reciprocity law for the Jacobi symbol, observing that $143 \equiv 7 \equiv 3(\bmod 4)$.
$\left(\frac{28}{143}\right)=\left(\frac{7}{143}\right)=-\left(\frac{143}{7}\right)=-\left(\frac{3}{7}\right)=\left(\frac{7}{3}\right)=\left(\frac{1}{3}\right)=1$
(b) But $143=11 \cdot 13$ is composite, so we cannot use that the Jacobisymbol is 1 , in order to conclude that the congruence is solvable. However, since the Legendre symbol $\left(\frac{28}{13}\right)=\left(\frac{2}{13}\right)=-1$, on the contrary the congruence has no solutions.
ANSWER: (a) 1 (b): No!
(5) (a) can be solved by expanding $\sqrt{7}$ in a continued fraction and noting that its periodlength is even. However it is a special case of (b); If there are integers x, y, such that $x^{2}-n y=-1$,
then the congruence $x^{2} \equiv-1(\bmod p)$ has a solution, for each prime p, dividing n. But when $p \equiv 3(\bmod 4)$, it cannot have a solution!
(6) Evidently we should use Fermat's litle theorem.
$n \sum_{d \mid n} d^{p-2}=\sum_{d \mid n} \frac{n}{d} d^{p-1} \equiv \sum_{d \mid n} \frac{n}{d} \cdot 1 \equiv \sum_{d \mid n} d \equiv \sigma(n)$ $(\bmod p)$, since $d^{p-1} \equiv 1(\bmod p)$ for each divisor d of n, when the prime p does not divide n. If n is a perfect number, then $\sigma(n)=2 n$. Hence from (a) we get that $n \sum_{d \mid n} d^{p-2} \equiv 2 n$ $(\bmod p)$. Since $(n, p)=1$, we can cancel p and we get the congruence in (b).

