(SKETCHES OF) SOLUTIONS, NUMBER THEORY,

 TATA 54, 2015-03-19(1) $\varphi(25)=\varphi\left(5^{2}\right)=5 \cdot 4=20$. Euler's theorem says that $7^{20} \equiv$ $1(\bmod 25)$. Therefore $7^{8253}=\left(7^{20}\right)^{412} 7^{13} \equiv 7^{13} \equiv\left(7^{2}\right)^{6} 7 \equiv$ $(49)^{6} 7 \equiv(-1)^{6} 7 \equiv 7(\bmod 25)$

ANSWER: 7
(2) We can read off from the prime factorization of n if n can be written as the sum of two squares and the number of ways it can be done.
(a) $1845=9 \cdot 205=3^{2} \cdot 5 \cdot 41$. Since no prime of the form $4 k+3$ occurs with an odd power in 1845 , the number 1845 can be written as the sum of two squares of integers.
(b) Since $3510=10 \cdot 351=2 \cdot 5 \cdot 3 \cdot 117=2 \cdot 3^{3} \cdot 5 \cdot 13$, where 3 occurs to an odd power, the number 3510 cannot be written as the sum of two squares.
(c) Since $n=11700000=117 \cdot 10^{5}=2^{5} \cdot 5^{5} \cdot 3^{2} \cdot 13$, the searched number of ordered pairs is $4(5+1)(1+1)=48$
ANSWER: (a): Yes (b): No (c): In 48 ways.
(3) $77=7 \cdot 11$, so the congruence $x^{2} \equiv 17(\bmod 77)$ is solvable if and only if the congruences $x \equiv 17(\bmod 7)$ and $x^{2} \equiv 17$ (mod 11) are both solvable. Computing the Legendre symbol $\left(\frac{17}{7}\right)=\left(\frac{3}{7}\right)=-\left(\frac{7}{3}\right)=-\left(\frac{1}{3}\right)=-1$, where the quadratic reciprocity law is used. shows that the first congruence is not solvable. (The second congruence is not solvable either.) Note that the Jacobi symbol $\left(\frac{17}{77}\right)=1$. but this gives us no information about the solvability of the congruence $x^{2} \equiv 17(\bmod 77)$.
ANSWER: No, the congruence has no solutions.
(4) (a) Since $8^{2}<80<9^{2}, 8<\sqrt{80}<9$ and $a_{0}=[\sqrt{80}]=8$. $\alpha_{1}=\frac{1}{\alpha_{0}-a_{0}}=\frac{1}{\sqrt{80}-8}=\frac{\sqrt{80}+8}{16} .1=\frac{8+8}{16}<\alpha_{1}<\frac{9+8}{16}<2$. Hence $a_{1}=2 . \quad \alpha_{2}=\frac{1}{\alpha_{1}-a_{1}}=\sqrt{80}+8 . a_{2}=[\sqrt{80}+8]=$ $[\sqrt{80}]+8=16$. We then get $\alpha_{3}=\alpha_{1}$. Hence $\sqrt{80}=$ [$8 ; \overline{1,16}$]. The period length is even, namely 2 .
(b) The positive solutions of the diophantine equation $x^{2}-$ $80 y^{2}=1$ are given by $\left(x_{j}, y_{j}\right)=\left(p_{2 j-1}, q_{2 j-1}\right)$ for $j=$ $1,2,3, \ldots$ The least one is obtained from $\frac{p_{1}}{q_{1}}=[8 ; 1]=$ $8+\frac{1}{1}=\frac{9}{1}$. The next solution we get from $\frac{p_{3}}{q_{3}}=[8 ; 1,16,1]=$
$\frac{161}{18}$, and therefore the two smallest solutions are $x=9, y=$ 1 and $x=161, y=18$. If you have found the first solution $x_{1}=9, y_{1}=1$, which you can also find by inspection, then the next solution $\left(x_{2}, y_{2}\right)$ can also be computed by using the formula $x_{2}+y_{2} \sqrt{80}=\left(x_{1}+y_{1} \sqrt{80}\right)^{2}=(9+\sqrt{80})^{2}=$ $161+18 \sqrt{80}$.
ANSWER: (a): $[8 ; \overline{1,16}]$ (b): The two smallest solutions are $(x, y)=(9,1)$ and $(x, y)=(161,18)$.
(5)
(a) $\operatorname{ord}_{41} 6 \mid \varphi(41)=40.6^{2}=36 \equiv-5(\bmod 41), 6^{4} \equiv 25 \equiv$ $-16(\bmod 41), 6^{5} \equiv-96 \equiv-14(\bmod 41), 6^{8} \equiv(-16)^{2} \equiv$ $256 \equiv 10(\bmod 41), 6^{10}=\left(6^{5}\right)^{2} \equiv 196 \equiv-9(\bmod 41)$, $6^{20} \equiv(-9)^{2} \equiv 81 \equiv-1(\bmod 41)$ Hence $\operatorname{ord}_{41} 6=40$ and 6 is a primitive root modulo 41 .
(b) $82=2 \cdot 41$ and 6 is a primitive root modulo 41. Since 6 is an even number we get that $6+41=47$ is a primitive root modulo 82.
ANSWER: (b): E.g. 47 is a primitive root modulo 82.
(6) (a) The largest possible order of an integer modulo 77 equals $\lambda(77)$ computed as the least common multiple of the numbers $\lambda(7)=6$ and $\lambda(11)=10$, since $77=7 \cdot 11$. Hence $\lambda(77)=30$.
(b) In order to find an integer whose order modulo 77 is 30 , we first find integers a_{1} and a_{2}, such that $\operatorname{ord}_{7} a_{1}=6$ and $\operatorname{ord}_{11} a_{2}=10$. Let us take $a_{1}=3$
and $a_{2}=2$. Then if $a \cong 3(\bmod 7)$, then $a^{k} \equiv 1(\bmod 77)$ if and only if $a^{k} \equiv 1(\bmod 7)$ and $(\bmod 11)$ if and only if k is divisible by both 6 and 10 i.e divisible by 30 . Hence ord $a=30$. Using the chinese remainder theorem we can take $a=23$.

ANSWER: (a): 30 (b): E.g. 24.

