(SKETCHES OF) SOLUTIONS, NUMBER THEORY,

 TATA 54, 2016-06-09(1) Since $108=2^{2} \cdot 3^{3}$, we show that $n^{21} \equiv n^{3}(\bmod 4)$ and $n^{21} \equiv n^{3}$ $\left(\bmod 3^{3}\right)$ for all n.

If n is even, then both n^{21} and n^{3} are divisible by 4 . If n is odd, then $n^{2} \equiv 1(\bmod 4)$ and therefore $n^{21} \equiv n\left(n^{2}\right)^{10} \equiv n \equiv$ $n^{3}(\bmod 4)$. Hence the first congruence holds.

If $3 \mid n$, then both sides in the second congruence are congruent to 0 modulo 3^{3}. If $3 \nmid n$, then by Euler's theorem $n^{18} \equiv 1$ $\left(\bmod 3^{3}\right)$. Observe that $\varphi\left(3^{3}\right)=3^{2} \cdot 2=18$. Hence $n^{21}=$ $n^{3} \cdot n^{18} \equiv n^{3}\left(\bmod 3^{3}\right)$.
(2) A positive integer can be written as the sum of the squares of two integers if and only if each prime of the form $4 k+3$ in its prime factorization occurs to an even power.
(a) $4949=7^{2} \cdot 101$
(b) $3069=3^{2} \cdot 11 \cdot 31$
(c) If $n=x^{2}+y^{2}$, then n is congruent to 0,1 or 2 , since a square is congruent to 0 or 1 modulo 4 . However $100000000003 \equiv$ $3(\bmod 4)$.
ANSWER:(a): Yes (b): No (c): No
(3) First 3751 is a composite number, namely $3751=11 \cdot 341=$ $11^{2} \cdot 31$. (Note that $1-5+7-3=0$ and $1-4+3=0$). We want to show that the second condition for a number to be a pseudoprime is satisfied, namely in our case that $3^{3750} \equiv 1$ $(\bmod 3751)$. Now $3^{5}=243 \equiv 1\left(\bmod 11^{2}\right)$ and since $5 \mid 3750$ therefore $3^{3750} \equiv\left(\bmod 11^{2}\right)$. Since $30 \mid 3750$, using Fermat's little theorem we also get $3^{3750} \equiv 1(\bmod 31)$. Hence the second condition is satisfied.
(4) (a) Since $4036 \equiv 10(\bmod 2013)$, we get

$$
\left(\frac{4036}{2013}\right)=\left(\frac{10}{2013}\right)=\left(\frac{2}{2013}\right)\left(\frac{5}{2013}\right) .
$$

But $\left(\frac{2}{2013}\right)=-1$, since $2013 \equiv 5(\bmod 8)$ and using the law of quadratic reciprocity

$$
\begin{aligned}
& \quad\left(\frac{5}{2013}\right)=\left(\frac{2013}{5}\right)=\left(\frac{3}{5}\right)=\left(\frac{5}{3}\right)=\left(\frac{2}{3}\right)=-1 . \\
& \text { Hence }\left(\frac{4036}{2013}\right)=(-1) \cdot(-1)=1 .
\end{aligned}
$$

(b) Since $11 \mid 2013$, the congruence $x^{2} \equiv 4036(\bmod 2013)$ is equivalent to $x^{2} \equiv 10(\bmod 2013)$. If this congruence is satisfied then $x^{2} \equiv 10(\bmod 11)$ and therefore $x^{2} \equiv-1$ $(\bmod 11)$, would have a solution, which is not the case. The prime number 11 is namely congruent to 3 modulo 4 .
ANSWER: (a): 1 (b): No
(5) (a) Use the algoritm
$\alpha_{0}=\alpha$
$a_{k}=\left[\alpha_{k}\right]$
$\alpha_{k+1}=\frac{1}{\alpha_{k}-a_{k}}$
to compute the continued fraction expansion $\left[a_{0} ; a_{1}, a_{2}, \ldots \ldots\right]$ of an irrational number α. You will find that $\sqrt{15}=$ $[3 ; \overline{1,6}]$,
(b) Since the periodlength is even $(=2)$, there are no integer solutions to $x^{2}-15 y^{2}=-1$. This can also been seen in a different way. If x and y are integers such that $x^{2}-15 y^{2}=$ -1 , then $x^{2} \equiv-1(\bmod 3)$, but that is impossible.
ANSWER: (a): $[3 ; \overline{1,6}]$ (b): No, it has no solutions.
(6) We will use that $\operatorname{ord}_{43} a \mid 42$ for all integers a not divisible by 43.
(a) $2^{7}=128=129-1 \equiv-1(\bmod 43)$ and therefore $2^{14} \equiv 1$ $(\bmod 43)$. Hence $\operatorname{ord}_{43} 2 \mid 14$ Since $\operatorname{ord}_{43} 2 \neq 1,2,7$ necessarily $\operatorname{ord}_{43} 2=14$.
(b) The calculations $3^{4}=81=-5+2 \cdot 43 \equiv-5(\bmod 43)$, $3^{6}=3^{2} \cdot 3^{4} \equiv-45 \equiv-2(\bmod 43), 3^{7} \equiv-6(\bmod 43)$, $3^{14} \equiv 36 \equiv-7(\bmod 43), 3^{21} \equiv(-6)(-7)(\bmod 43)$, show that $\operatorname{ord}_{43} 3=42$. Hence 3 is a primitive root of 43 .
(c) Let $d=\operatorname{ord}_{43^{2}} 3$. Then $d \mid \varphi\left(43^{2}\right)=43 \cdot 42$. Since $3^{d} \equiv 1$ $\left(\bmod 43^{2}\right)$ also $3^{d} \equiv 1(\bmod 43)$. Therefore $42=\operatorname{ord}_{43} 3 \mid$ d. Hence there are just two possibilities, namely $d=42$ or $d=43 \cdot 42$. We will exlude the first one by showing that 3^{42} is not congruent to 1 modulo 43^{2}. So we start to calculate and we use the binomial theorem.
$3^{4}=81=-5+2 \cdot 43$,
$3^{6}=9(-5+2 \cdot 43)=-45+18 \cdot 43=-2+17 \cdot 43$,
$3^{42}=\left(3^{6}\right)^{7}=(-2+17 \cdot 43)^{7} \equiv-2^{7}+7 \cdot 2^{6} \cdot 17 \cdot 43 \equiv$
$-128+64 \cdot 119 \cdot 43 \equiv 1-3 \cdot 43+(21+43)(-10+3 \cdot 43) \cdot 43 \equiv$
$1-3 \cdot 43-210 \cdot 43 \equiv 1-213 \cdot 43 \equiv 1-(5 \cdot 43-2) 43 \equiv 1+2 \cdot 43$ $\left(\bmod 43^{2}\right)$.
Hence the first possibility is excluded and 3 is therefore a primitive root of 43^{2}.
Answer: (a) $\operatorname{ord}_{43} 2=14$.

