## (SKETCHES OF) SOLUTIONS, NUMBER THEORY, TATA 54, 2016-03-21

(1) It can be seen from the prime factorization of $n$, if $n$ can be written as the sum of two squares of integers.
(a) $1098=2 \cdot 549=2 \cdot 3^{2} \cdot 61$. Since no prime of the form $4 k+3$ occurs with an odd power in 1098, the number 1098 can be written as the sum of two squares.
(b) $4067=7 \cdot 581=7^{2} \cdot 83$, and here there is a prime number of the form $4 k+3$, namely 83 , which occurs to an odd power. Hence 4067 cannot be written as the sum of two squares.
ANSWER: (a): Yes (b): No.
(2) (a) $\alpha=[8 ; \overline{16}]=8+\frac{1}{\beta}$, where $\beta$, where $\beta=16+\frac{1}{\beta}$. We get the equation $\beta^{2}-16 \beta-1=0$ and its positive solution is $\beta=8+\sqrt{65}$.
(b) The positive solutions of the diophantine equation $x^{2}-$ $65 y^{2}=1$ are given by $\left(x_{j}, y_{j}\right)=\left(p_{2 j-1}, q_{2 j-1}\right)$ for $j=$ $1,2,3, \ldots$. The least one is obtained from $\frac{p_{1}}{q_{1}}=[8 ; 16]=$ $8+\frac{1}{16}=\frac{129}{16}$. Even if you do not remeber the exact formula, you can find the smallest solution, because every solution is given by a convergent of the continued fraction expansion of $\sqrt{65}$.
ANSWER: (b): The smallest solution is $(x, y)=(129,16)$.
(3) $45+60 i=15(3+4 i)=3 \cdot 5 \cdot(3+4 i)$. The prime number 3 is a gaussian prime, since it is congruent $3(\bmod 4)$. Moreover $5=(2+i)(2-i)$ and $2+i$ and $2-i$ are gaussian primes, since their norms are the prime number 5 . Now the norm of $3+4 i=25$. Since $2+i$ is a gaussian prime with norm 5 , let us try if $(2+i) \mid(3+i): \frac{3+4 i}{2+i}=\frac{(3+4 i)(2-i)}{5}=2+i$. Hence $3+4 i=(2+i)^{2}$.

ANSWER: $3(2-i)(2+i)^{3}$
(4) Let $f(x)=x^{3}+2 x^{2}+x+1$. Solve first the congruence $f(x) \equiv 0$ $(\bmod 5)$. Computing we get $f(x) \equiv 1,0,1,-1,-1(\bmod 5)$ for respectively $x \equiv 0,1,-1,2,-2(\bmod 5)$. Hence $f(x) \equiv 0$ $(\bmod 5)$ has the solutions $x=1+5 t$ for $t \in \mathbb{Z}$. We determine next those $t$ such that $f(1+5 t) \equiv 0\left(\bmod 5^{2}\right)$. Now $f(1+5 t)=$ $(1+5 t)^{3}+2(1+5 t)^{2}+1+5 t+1 \equiv 5+3 \cdot 5 t+2 \cdot 2 \cdot 5 t+5 t \equiv$
$5+8 \cdot 5 t \equiv 5+(2 \cdot 5-2) 5 t \equiv 5(1-2 t)\left(\bmod 5^{2}\right)$. Hence $f(1+$ $5 t) \equiv 0\left(\bmod 5^{2}\right) \Longleftrightarrow 5(1-2 t) \equiv 0\left(\bmod 5^{2}\right) \Longleftrightarrow 1-2 t \equiv 0$ $(\bmod 5) \Longleftrightarrow 2 t \equiv 1(\bmod 5) \Longleftrightarrow t \equiv 3(\bmod 5) \Longleftrightarrow t=$ $3+5 n, t \in \mathbb{Z}$.

Thus $x=1+5 t=1+5(3+5 n)=16+25 n$.
ANSWER: $x=16+25 n$, where $n \in \mathbb{Z}$.
(5) (a) Since $\operatorname{ord}_{11} 2 \mid 10$ and $2^{5}=32 \equiv-1(\bmod 11)$, $\operatorname{ord}_{11} 2=10$ and therefore 2 is a primitive root of 11 .
(b)

$$
\begin{array}{r|r|l|l|l|l|l|l|l|l|l}
\mathrm{x} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \operatorname{ind}_{2} x & 10 & 1 & 8 & 2 & 4 & 9 & 7 & 3 & 6 & 5
\end{array}
$$

(c)

$$
\begin{gathered}
7^{x} \equiv 3 \quad(\bmod 11) \\
\Longleftrightarrow \\
\operatorname{ind}_{2} 7^{x} \equiv \operatorname{ind}_{2} 3 \quad(\bmod 10) \\
\Longleftrightarrow \\
x \operatorname{ind}_{2} 7 \equiv \operatorname{ind}_{2} 3 \quad(\bmod 10) \\
\\
\Longleftrightarrow \\
7 x \equiv 8 \\
\\
\Longleftrightarrow(\bmod 10) \\
3 \cdot 7 x \equiv 3 \cdot 8 \\
\\
\Longleftrightarrow \\
x \equiv 4
\end{gathered}
$$

ANSWER: (a): For example 2 is a primitive root modulo 11. (b): See the table above. (c): $x=4+10 n$, for $n=0,1,2, \ldots$
(6) $3 x^{2}+x+6 \equiv 0(\bmod 59) \Longleftrightarrow 20\left(3 x^{2}+x+6\right) \equiv 0(\bmod 59)$ $\Longleftrightarrow x^{2}+20 x+120 \equiv 0(\bmod 59) \Longleftrightarrow(x+10)^{2} \equiv-20$ (mod 59). Our congruence has therefore a solution if and only if $\left(\frac{-20}{59}\right)=1$ Now $\left(\frac{-20}{59}\right)=\left(\frac{-1}{59}\right)\left(\frac{2}{59}\right)^{2}\left(\frac{5}{59}\right)$. Here $\left(\frac{-1}{59}\right)=-1$, since $59 \equiv 3(\bmod 4)$ and by the law of quadratic reciprocity (observe that $5 \equiv 1(\bmod 4)),\left(\frac{5}{59}\right)=\left(\frac{59}{5}\right)=\left(\frac{4}{5}\right)=1$. Hence $\left(\frac{-20}{59}\right)=(-1) \cdot 1 \cdot 1=-1$ and the congruence therefore has no solutions.

ANSWER: No solutions

