(SKETCHES OF) SOLUTIONS, NUMBER THEORY,

 TATA 54, 2016-08-27(1) Since $75=3 \cdot 5^{2}, \varphi(75)=2 \cdot 5 \cdot 4=40$. By Euler's theorem $7^{40} \equiv 1(\bmod 75)$, observing that $1242=31 \cdot 40+2$, we get $7^{1242}=\left(7^{40}\right)^{31} \cdot 7^{2} \equiv 7^{2} \equiv 49(\bmod 75)$ ANSWER: 49.
(2) We use the law of quadratic reciprocity and the formula for the values at 2 of the Legendre symbol. First factorise into primes: $437=19 \cdot 23$.
$\left(\frac{6}{19}\right)=\left(\frac{2}{19}\right)\left(\frac{3}{19}\right)=(-1)\left(\frac{3}{19}\right)=\left(\frac{19}{3}\right)=\left(\frac{1}{3}\right)=1$.
$\left(\frac{6}{23}\right)=\left(\frac{2}{23}\right)\left(\frac{3}{23}\right)=1 \cdot\left(\frac{3}{23}\right)=-\left(\frac{23}{3}\right)=-\left(\frac{2}{3}\right)=-(-1)=1$.
Since the Legendre symbols $\left(\frac{6}{19}\right)$ and $\left(\frac{6}{23}\right)$ have the value 1 , the congruences $x^{2} \equiv 6(\bmod 19)$ and $x^{2} \equiv 6(\bmod 23)$ are both solvable. Hence also $x^{2} \equiv 6(\bmod 19 \cdot 23)$ is solvable.

ANSWER: Yes
(3) Since each solution of the congruence $f(x) \equiv 0\left(\bmod 7^{2}\right)$ is also a solution of the congruence $f(x) \equiv 0(\bmod 7)$, we first solve that congruence. This is done by computing $f(x)$ for $x=0, \pm 1, \pm 2, \pm 3$. We find that the solutions are $x \equiv 2$ $(\bmod 7)$. Hence the solutions of $f(x) \equiv 0\left(\bmod 7^{2}\right)$ must be of the form $x=2+7 t$ for some $t \in \mathbb{Z}$. Next we want to determine those t, which actually yield solutions. By the binomial theorem $f(2+7 t)=(2+7 t)^{4}+(2+7 t)+3 \equiv 2^{4}+4 \cdot 2^{3} \cdot 7 t+2+7 t+3 \equiv$ $21+33 \cdot 7 t \equiv 7 \cdot 3+(-2+7 \cdot 5) 7 t \equiv 7(3-2 t)\left(\bmod 7^{2}\right)$. Therefore $f(2+7 t) \equiv 0\left(\bmod 7^{2}\right) \Longleftrightarrow 3-2 t \equiv 0(\bmod 7) \Longleftrightarrow$ $2 t \equiv 3(\bmod 7) \Longleftrightarrow 4 \cdot 2 t \equiv 4 \cdot 3(\bmod 7) \Longleftrightarrow t \equiv 5$ $(\bmod 7)$. We get the solutions $x=2+7(5+7 n)=37+49 n$ for some $n \in \mathbb{Z}$.

ANSWER: $x=37+49 n$, where $n \in \mathbb{Z}$
(4) First we expand 101 into a continued fraction using the usual algorithm (see the textbook, the calculations are not written down here) We get $\sqrt{101}=[10 ; \overline{20}]$ and since the period length is one the positive solutions of $x^{2}-101 y^{2}$ are given by $\left(x_{j}, y_{j}\right)=$ $\left(p_{(2 j-1) \cdot 1-1}, q_{(2 j-1) \cdot 1-1}\right.$ for $j=1,2, \ldots$, where $\frac{p_{k}}{q_{k}}$ is the k 'th convergent of the continued fraction $[10 ; \overline{20}]$. Thus the first solution is $\left(x_{1}, y_{1}\right)=\left(p_{0}, q_{0}\right)=(10,1)$. The next one is $\left(x_{2}, y_{2}\right)=$
(p_{2}, q_{2}), which we get by computing

$$
\frac{p_{2}}{q_{2}}=[10 ; 20,20]=10+\frac{1}{20+\frac{1}{20}}=10+\frac{20}{401}=\frac{4030}{401}
$$

ANSWER: The two smallest solutions in positive integers are $(10,1)$ and $(4030,401)$.
(5) (a) $2^{6}=64 \equiv-9(\bmod 73), 2^{9}=2^{3} \cdot 2^{6} \equiv 8(-9) \equiv-72 \equiv 1$ (mod 73) Hence the order of 2 modulo 73 divides 9 . Since it is not 1 or 3 , it must be 9 .
(b) Let d be the order of 5 modulo 73 . It must be a divisor of $\varphi(73)=72=2^{3} 3^{2}$. The computations we have to show that $d=72$, that is that 5 is a primitive root, can be done as follows. Note that $5^{4}=625=10 \cdot 73-105 \equiv-32 \equiv-2^{5}$ $(\bmod 73)$. Hence $5^{4 \cdot 9} \equiv\left(-2^{5}\right)^{9} \equiv-\left(2^{9}\right)^{5} \equiv-1(\bmod 73)$. It follows that d does not divide 36. We just have to exclude that $d=8$ or $d=24$. But this follows from $5^{24}=\left(5^{4}\right)^{6} \equiv$ $\left(-2^{5}\right)^{6} \equiv 2^{30} \not \equiv 1(\bmod 73)$, since the order of 2 does not divide 30 .
ANSWER: (a): 9 (b): For example 5 is a primitive root of 73.
(6) If p is a prime number that divides n, then necessarily $p-1$ divides $\varphi(n)=500=2^{2} 5^{3}$. Therefore the only primes that possibly could divide n are $2,3,5,11,101,251$. Also when p^{2} divides n, then $p \mid \varphi(n)$. Hence 3, 11, 101 and 251 can occur only to the first power in the prime factorisation of n. If $251 \mid n$ then $n=251 m$ and since m and 251 must be relatively prime $\varphi(n)=250 \varphi(m)$ and therefore $\varphi(m)=2$. Hence $m=2^{2}, 3$ or $2 \cdot 3$. In this case we get $n=753,1004,1506$. If $101 \mid n$ then $n=101 m$ and thus $\varphi(m)=5$, and no such m exists, because $\varphi(m)$ is always even for $m>2$. If $11 \mid n$, then $n=11 m$ and we get $\varphi(m)=50=2 \cdot 5^{2}$ and it is easily seen that there are no such numbers m. If the prime divisors of n are among $2,3,5$ then $n=5^{4}$ or $n=2 \cdot 5^{4}$.

ANSWER: $n=625,753,1004,1250,1506$.

