Kurskod: TATA 54
Provkod: TEN 1
NUMBER THEORY, Talteori 6 hp
March 21, 2016, 14-18.
Matematiska institutionen, Linköpings universitet.
Examiner: Leif Melkersson
Inga hjälpmedel är tillåtna! (For example books or pocket calculators are not allowed!)
You may write in Swedish, if you do this consistently.
You are rewarded at most 3 points for each of the 6 problems.
To get grade 3,4 or 5 , you need respectively 7,11 and 14 points.
(1) Can n be written as $n=x^{2}+y^{2}$, where x and y are integers, when
(a) $n=1098$
(b) $n=4067$
(2) (a) Show that $\sqrt{65}=[8 ; \overline{16}]$.
(b) Find the smallest solution (x, y) in positive integers of the diophantine equation $x^{2}-65 y^{2}=1$.
(3) Factorise the gaussian integer $45+60 i$ into gaussian primes.
(4) Solve the congruence $x^{3}+2 x^{2}+x+1 \equiv 0\left(\bmod 5^{2}\right)$
(5) (a) Find a primitive root of 11.
(b) Make a table of indices modulo 11 with respect to this primitive root.
(c) Find all integers $x \geq 0$, such that $7^{x} \equiv 3(\bmod 11)$.
(6) Decide if the congruence $3 x^{2}+x+6 \equiv 0(\bmod 59)$ has any solutions or not.

