Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1
March 13, 2017
LINKÖPINGS UNIVERSITET
Matematiska Institutionen
Examinator: Jan Snellman
Solutions

1) Find all odd positive integers n such that $n+1$ is divisible by 3 and $n+2$ is divisible by 5 .
Solution: The integer n is a solution to

$$
\begin{aligned}
& n \equiv 1 \quad \bmod 2 \\
& n \equiv-1 \quad \bmod 3 \\
& n \equiv-2 \quad \bmod 5
\end{aligned}
$$

So

$$
n=1+2 t \equiv-1 \quad \bmod 3 \quad \Longrightarrow \quad t \equiv-1 \quad \bmod 3,
$$

hence

$$
n=1+2(-1+3 s)=-1+6 s .
$$

Then

$$
-1+6 s \equiv-2 \quad \bmod 5 \quad \Longrightarrow \quad s \equiv-1 \quad \bmod 5
$$

hence

$$
n=-1+6(-1+5 r)=-7+30 r=23+30 r^{\prime}
$$

Thus all positive integer solutions are $n=23+30 r^{\prime}$ with $r^{\prime} \geq 0$.
2) Show that the congruence

$$
x^{3}+x+1 \equiv 0 \quad \bmod 11^{n}
$$

has a unique solution for every positive integer n.
Solution: Put $f(x)=x^{3}+x+1$, then $f^{\prime}(x)=3 x^{2}+1$. By inspection, we see that $x=r=2$ is the unique solution $\bmod 11$. Furthermore, $f^{\prime}(r)=3 * 2^{2}+1=13 \not \equiv 0 \bmod 11$, so this solution lifts to a solution $\bmod 11^{n}$ for all positive n.
3) The number 431 is a prime. Determine if the congruence

$$
2 x^{2}-6 x+38 \equiv 0 \quad \bmod 431
$$

has any solutions.
Solution: There is a misprint in the problem, which makes it harder. I had intended to use

$$
\begin{aligned}
& 2 x^{2}-12 x+38 \equiv 2\left(x^{2}-6 x+19\right) \equiv 2\left((x-3)^{2}-9+19\right) \\
& \equiv 2\left((x-3)^{2}+10\right) \quad \bmod 431
\end{aligned}
$$

Then the congruence is solvable if and only if -10 is a square $\bmod 431$. We have that

$$
\left(\frac{-10}{431}\right)=\left(\frac{-1}{431}\right)\left(\frac{2}{431}\right)\left(\frac{5}{431}\right)
$$

Here $\left(\frac{-1}{431}\right)=-1$ since $431 \equiv-1 \bmod 4,\left(\frac{2}{431}\right)=1$ since $431 \equiv-1$ $\bmod 8$, and finally,

$$
\left(\frac{5}{431}\right)=\left(\frac{431}{5}\right)=\left(\frac{1}{5}\right)=1
$$

by quadratic reciprocity (since $5 \equiv 1 \bmod 4$) and since $431 \equiv 1 \bmod 5$. It follows that $\left(\frac{-10}{431}\right)=-1 * 1 * 1=-1$, so -10 is not a square $\bmod 431$, and the congruence has no solution.
However, the actual congruence is $2 x^{2}-6 x+38$, which makes the calculations messier.

$$
\begin{aligned}
2 x^{2}-6 x+38 \equiv 2\left(x^{2}-3 x+19\right) \equiv & 2\left((x-3 / 2)^{2}-9 / 4+19\right) \\
& \equiv 2\left((x+214)^{2}+91\right) \bmod 431
\end{aligned}
$$

since $1 / 4 \equiv 108 \bmod 431$ and $1 / 2 \equiv 216 \bmod 431$. We now need to check if 91 is a square $\bmod 431$.
Since $431 \equiv 3 \bmod 4$ we have that
$\left(\frac{91}{431}\right)=\left(\frac{7}{431}\right)\left(\frac{13}{431}\right)=\left(-\left(\frac{431}{7}\right)\right)\left(\frac{431}{13}\right)=-\left(\frac{4}{7}\right)\left(\frac{2}{13}\right)=-1 *(-1)=1$,
so this congruence does have solutions. In fact, since $x=214 \pm y$ $\bmod 431$, where $y^{2} \equiv 91 \bmod 431$, which means that $y \equiv \pm 130 \bmod 431$, the solutions to the congruence are $x \equiv 87 \bmod 431$ and $x \equiv 347$ $\bmod 341$.
4) How many primitive roots are there mod 5? Find them all. How many primitive roots are there $\bmod 25$? For each primitive root $a \bmod 5$ that you find, check which of the "lifts"

$$
a+5 t, \quad 0 \leq t \leq 4
$$

are primitive roots mod 25.
Solution: There are $\phi(\phi(5))=\phi(5-1)=\phi(4)=4-2=2$ primitive roots modulo 5 . Obviously 1 and -1 are not primitive roots, so the primitive roots are 2 and 3 .
There are $\phi(\phi(25))=\phi(25-5)=\phi(20)=\phi(4 * 5)=\phi(4) * \phi(5)=2 * 4=8$ primitive roots mod 25 . Furthermore, \boldsymbol{Z}_{25}^{x} has $\phi(25)=20$ elements, so an element of \boldsymbol{Z}_{25}^{x} has order a divisor of 20 , and is a primitive root iff it has order 20.
We first check the lifts of 2 ,

$$
x=2+5 t, \quad 0 \leq t \leq 4 .
$$

We se that $7^{2}=49 \equiv-1 \bmod 25$, so $7^{4} \equiv 1 \bmod 25$, but the other lifts have all order 20 , and are primitive roots.
Similarly, for the lifts of $3,18^{2} \equiv(-7)^{2} \equiv 49 \equiv-1 \bmod 25$, so $18^{4} \equiv 1$. The other lifts have all order 20 , and are primitive roots.
5) Determine the (periodic) continued fraction expansion of $\sqrt{7}$. Determine the solution $(x, y) \in \boldsymbol{Z}^{2}, x, y>0$, to $x^{2}-7 y^{2}=1$ with smallest x.
Solution: Put $\alpha=\alpha_{0}=\sqrt{7}$. Then $a_{0}=\left\lfloor\alpha_{0}\right\rfloor=2$,

$$
\alpha_{1}=\frac{1}{\alpha_{0}-a_{0}}=\frac{1}{\sqrt{7}-2}=\frac{\sqrt{7}+2}{3}=1+\frac{\sqrt{7}-1}{3}
$$

so $a_{1}=\left\lfloor\alpha_{1}\right\rfloor=1$. Continuing, we get that $a_{2}=a_{3}=1, a_{4}=4$, and that $\alpha_{5}=\alpha_{1}$. Hence, the periodic expansion is

$$
\sqrt{7}=[2, \overline{1,1,1,4}] .
$$

The convergents $C_{k}=p_{k} / q_{k}$ are obtained from the reccurence

$$
\begin{aligned}
p_{k+1} & =a_{k+1} p_{k}+p_{k-1} \\
q_{k+1} & =a_{k+1} q_{k}+q_{k-1}
\end{aligned}
$$

with initial values $q_{-2}=1, p_{-2}=0, q_{-1}=0, p_{-1}=1$. This gives

$$
C_{0}=2, C_{1}=3, C_{2}=5 / 2, C_{3}=8 / 3
$$

We have that $8^{2}-7 * 3^{2}=1$, and $(x, y)=(8,3)$ is the fundamental solution to Pell's equation.
6) For each positive integer n, let $g(n)$ denote the number of triples (a, b, c) of positive integers such that $a b c=n$. Calculate $g\left(p^{e}\right)$, with p a prime, then show that g is a multiplicative arithmetic function and use this to give a formula for $g(n)$ in terms of the prime factorisation of n.
(Hint: the number-of-divisors function τ is the Dirichlet square of the constant-one function. What is the Dirichlet cube?).
Solution: Denote by 1 the multiplicative arithmetic function which has constant value 1 . Then

$$
(\mathbf{1} * \mathbf{1})(n)=\sum_{d \mid n} \mathbf{1}(d) \mathbf{1}(n / d)=\sum_{n=a b} \mathbf{1}(a) \mathbf{1}(b)=\sum_{n=a b} 1 .
$$

where the last two sums are over all factorisations $n=a b, a, b \in \boldsymbol{Z}$, $a, b>0$. Similarly,

$$
\begin{aligned}
& (1 * 1 * \mathbf{1})(n)=\sum_{d \mid n} \mathbf{1}(d)(1 * \mathbf{1})(n / d)=\sum_{n=a B} \mathbf{1}(a)(\mathbf{1} * \mathbf{1})(B) \\
& \quad=\sum_{n=a B} \mathbf{1}(a) \sum_{b c=B} \mathbf{1}(b) \mathbf{1}(c)=\sum_{n=a b c} \mathbf{1}(a) \mathbf{1}(b) \mathbf{1}(c)=\sum_{n=a b c} 1=g(n)
\end{aligned}
$$

Since g is the iterated Dirichlet convolution of multiplicative functions, it follows that g is multiplicative. However, $\mathbf{1} * \mathbf{1}=\tau$, so

$$
g(n)=(\mathbf{1} * \mathbf{1} * \mathbf{1})(n)=\mathbf{1} *(\mathbf{1} * \mathbf{1})(n)=(\mathbf{1} * \tau)(n)=\sum_{d \mid n} \tau(d)
$$

We now let p be a prime, e a positive integer, and calculate

$$
g\left(p^{e}\right)=\sum_{d \mid p^{e}} \tau(d)=\sum_{\ell=0}^{e} \tau\left(p^{\ell}\right)=\sum_{\ell=0}^{e}(\ell+1)=(e+2)(e+1) / 2 .
$$

Since g is multiplicative, we now conclude that

$$
g\left(\prod_{j=1}^{r} p_{j}^{e_{j}}\right)=\prod_{j=1}^{r} \frac{\left(e_{j}+2\right)\left(e_{j}+1\right)}{2}=2^{-r} \prod_{j=1}^{r}\left(e_{j}+2\right)\left(e_{j}+1\right)
$$

