
Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1
March 13, 2017
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Solutions

1) Find all odd positive integers n such that n+ 1 is divisible by 3 and n+ 2
is divisible by 5.

Solution: The integer n is a solution to

n ≡ 1 mod 2

n ≡ −1 mod 3

n ≡ −2 mod 5

So
n = 1 + 2t ≡ −1 mod 3 =⇒ t ≡ −1 mod 3,

hence
n = 1 + 2(−1 + 3s) = −1 + 6s.

Then
−1 + 6s ≡ −2 mod 5 =⇒ s ≡ −1 mod 5

hence
n = −1 + 6(−1 + 5r) = −7 + 30r = 23 + 30r′.

Thus all positive integer solutions are n = 23 + 30r′ with r′ ≥ 0.

2) Show that the congruence

x3 + x+ 1 ≡ 0 mod 11n

has a unique solution for every positive integer n.

Solution: Put f(x) = x3 + x + 1, then f ′(x) = 3x2 + 1. By inspection,
we see that x = r = 2 is the unique solution mod 11. Furthermore,
f ′(r) = 3 ∗ 22 + 1 = 13 6≡ 0 mod 11, so this solution lifts to a solution
mod 11n for all positive n.



3) The number 431 is a prime. Determine if the congruence

2x2 − 6x+ 38 ≡ 0 mod 431

has any solutions.

Solution: There is a misprint in the problem, which makes it harder. I
had intended to use

2x2 − 12x+ 38 ≡ 2(x2 − 6x+ 19) ≡ 2((x− 3)2 − 9 + 19)

≡ 2((x− 3)2 + 10) mod 431

Then the congruence is solvable if and only if -10 is a square mod 431.
We have that (

−10

431

)
=

(
−1

431

)(
2

431

)(
5

431

)
Here

(−1
431

)
= −1 since 431 ≡ −1 mod 4,

(
2

431

)
= 1 since 431 ≡ −1

mod 8, and finally, (
5

431

)
=

(
431

5

)
=

(
1

5

)
= 1

by quadratic reciprocity (since 5 ≡ 1 mod 4) and since 431 ≡ 1 mod 5.
It follows that

(−10
431

)
= −1 ∗ 1 ∗ 1 = −1, so −10 is not a square mod 431,

and the congruence has no solution.

However, the actual congruence is 2x2 − 6x+ 38, which makes the calcu-
lations messier.

2x2 − 6x+ 38 ≡ 2(x2 − 3x+ 19) ≡ 2((x− 3/2)2 − 9/4 + 19)

≡ 2((x+ 214)2 + 91) mod 431

since 1/4 ≡ 108 mod 431 and 1/2 ≡ 216 mod 431. We now need to
check if 91 is a square mod 431.

Since 431 ≡ 3 mod 4 we have that(
91

431

)
=

(
7

431

)(
13

431

)
= (−

(
431

7

)
)

(
431

13

)
= −

(
4

7

)(
2

13

)
= −1∗(−1) = 1,

so this congruence does have solutions. In fact, since x = 214 ± y
mod 431, where y2 ≡ 91 mod 431, which means that y ≡ ±130 mod 431,
the solutions to the congruence are x ≡ 87 mod 431 and x ≡ 347
mod 341.



4) How many primitive roots are there mod 5? Find them all. How many
primitive roots are there mod 25? For each primitive root a mod 5 that
you find, check which of the “lifts”

a+ 5t, 0 ≤ t ≤ 4

are primitive roots mod 25.

Solution: There are φ(φ(5)) = φ(5−1) = φ(4) = 4−2 = 2 primitive roots
modulo 5. Obviously 1 and -1 are not primitive roots, so the primitive
roots are 2 and 3.

There are φ(φ(25)) = φ(25−5) = φ(20) = φ(4∗5) = φ(4)∗φ(5) = 2∗4 = 8
primitive roots mod 25. Furthermore, Zx

25 has φ(25) = 20 elements, so
an element of Zx

25 has order a divisor of 20, and is a primitive root iff it
has order 20.

We first check the lifts of 2,

x = 2 + 5t, 0 ≤ t ≤ 4.

We se that 72 = 49 ≡ −1 mod 25, so 74 ≡ 1 mod 25, but the other lifts
have all order 20, and are primitive roots.

Similarly, for the lifts of 3, 182 ≡ (−7)2 ≡ 49 ≡ −1 mod 25, so 184 ≡ 1.
The other lifts have all order 20, and are primitive roots.

5) Determine the (periodic) continued fraction expansion of
√

7. Determine
the solution (x, y) ∈ Z2, x, y > 0, to x2 − 7y2 = 1 with smallest x.

Solution: Put α = α0 =
√

7. Then a0 = bα0c = 2,

α1 =
1

α0 − a0
=

1√
7− 2

=

√
7 + 2

3
= 1 +

√
7− 1

3
,

so a1 = bα1c = 1. Continuing, we get that a2 = a3 = 1, a4 = 4, and that
α5 = α1. Hence, the periodic expansion is

√
7 = [2, 1, 1, 1, 4].

The convergents Ck = pk/qk are obtained from the reccurence

pk+1 = ak+1pk + pk−1

qk+1 = ak+1qk + qk−1



with initial values q−2 = 1, p−2 = 0, q−1 = 0, p−1 = 1. This gives

C0 = 2, C1 = 3, C2 = 5/2, C3 = 8/3.

We have that 82 − 7 ∗ 32 = 1, and (x, y) = (8, 3) is the fundamental
solution to Pell’s equation.

6) For each positive integer n, let g(n) denote the number of triples (a, b, c)
of positive integers such that abc = n. Calculate g(pe), with p a prime,
then show that g is a multiplicative arithmetic function and use this to
give a formula for g(n) in terms of the prime factorisation of n.

(Hint: the number-of-divisors function τ is the Dirichlet square of the
constant-one function. What is the Dirichlet cube?).

Solution: Denote by 1 the multiplicative arithmetic function which has
constant value 1. Then

(1 ∗ 1)(n) =
∑
d|n

1(d)1(n/d) =
∑
n=ab

1(a)1(b) =
∑
n=ab

1.

where the last two sums are over all factorisations n = ab, a, b ∈ Z,
a, b > 0. Similarly,

(1 ∗ 1 ∗ 1)(n) =
∑
d|n

1(d)(1 ∗ 1)(n/d) =
∑
n=aB

1(a)(1 ∗ 1)(B)

=
∑
n=aB

1(a)
∑
bc=B

1(b)1(c) =
∑
n=abc

1(a)1(b)1(c) =
∑
n=abc

1 = g(n).

Since g is the iterated Dirichlet convolution of multiplicative functions, it
follows that g is multiplicative. However, 1 ∗ 1 = τ , so

g(n) = (1 ∗ 1 ∗ 1)(n) = 1 ∗ (1 ∗ 1)(n) = (1 ∗ τ)(n) =
∑
d|n

τ(d).

We now let p be a prime, e a positive integer, and calculate

g(pe) =
∑
d|pe

τ(d) =
e∑

`=0

τ(p`) =
e∑

`=0

(`+ 1) = (e+ 2)(e+ 1)/2.

Since g is multiplicative, we now conclude that

g(
r∏

j=1

p
ej
j ) =

r∏
j=1

(ej + 2)(ej + 1)

2
= 2−r

r∏
j=1

(ej + 2)(ej + 1).


