Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1
June 08, 2017
LINKÖPINGS UNIVERSITET
Matematiska Institutionen
Examinator: Jan Snellman

Solutions

1) Use the Chinese Remainder Theorem to find all solutions to

$$
x^{2} \equiv 15 \quad \bmod 77
$$

Solution: Since $77=7 * 11$, we solve the congruence $\bmod 7$ and $\bmod 11$, then combine these solutions using the CRT.

$$
x^{2} \equiv 15 \equiv 1 \quad \bmod 7
$$

has the solutions $x \equiv \pm 1 \bmod 7$, and

$$
x^{2} \equiv 15 \equiv 4 \quad \bmod 11
$$

has the solutions $x \equiv \pm 2 \bmod 11$.
The Euclidean algorithm gives that

$$
1=\operatorname{gcd}(7,11)=(-3) * 7+2 * 11
$$

so

$$
\begin{array}{ll}
x \equiv 1 & \bmod 7 \\
x \equiv 2 & \bmod 11
\end{array}
$$

gives

$$
x=7 n+1=11 m+2 \Longrightarrow 7 n-11 m=1
$$

which have the solutions

$$
\begin{aligned}
n & =-3+11 s \\
m & =-2+7 s
\end{aligned}
$$

hence $x=-20+77 s$, so $x \equiv-20 \equiv 57 \bmod 77$. The other combinations of solutions mod 7 and $\bmod 11$ lift to $x \equiv 13 \bmod 77, x \equiv 20 \bmod 77$, and $x \equiv 64 \bmod 77$.
2) For which positive n does the congruence

$$
x^{5}+x+1 \equiv 0 \quad \bmod 5^{n}
$$

have a unique solution? Find all solutions for $n=1,2$.
Solution: Let $f(x)=x^{5}+x+1$. Then, by inspection, the congruence

$$
f(x) \equiv 0 \quad \bmod 5
$$

has the unique solution $x=2$. Since $f^{\prime}(x)=5 x^{4}+1$, we have that $f^{\prime}(x) \equiv 1 \bmod 5$, hence the zero $\bmod 5$ lifts uniquely to a zero $\bmod 5^{n}$ for all n, by Hensel's lemma. For $n=2$ we put
$s=2+5 t$ and calculate that

$$
\begin{aligned}
0 & \equiv f(s)=f(2+5 t) \quad \bmod 25 \\
& \equiv(2+5 t)^{5}+5 t+3 \quad \bmod 25 \\
& \equiv\left(2^{5}+\binom{5}{1} 2^{4}(5 t)+\binom{5}{2} 2^{3}(5 t)^{2}+\binom{5}{3} 2^{2}(5 t)^{3}+\binom{5}{4} 2^{1}(5 t)^{4}+(5 t)^{5}\right)+5 t+3 \quad \bmod 25 \\
& \equiv 32+5 t+3 \quad \bmod 25 \\
& \equiv 10+5 t \quad \bmod 25
\end{aligned}
$$

so $t \equiv-2 \bmod 25$ and the unique zero is $s=2+5 *(-2)=-8 \equiv 17 \bmod 25$.
3) Let $x=[13 ; \overline{1,7}]$. Compute the value of x.

Solution: We have

$$
x=[13 ; \overline{1,7}]=13+\frac{1}{1+\frac{1}{7+\frac{1}{1+\cdots}}},
$$

thus we put

$$
y=[\overline{1 ; 7}]=1+\frac{1}{7+\frac{1}{1+\frac{1}{7+\cdots}}}
$$

Then $x=13+1 / y$, and furthermore

$$
y=1+\frac{1}{7+\frac{1}{y}}=1+\frac{y}{7 y+1}
$$

so

$$
(y-1)(7 y+1)=y
$$

which has the solutions $y=\frac{1}{2} \pm \frac{\sqrt{77}}{14}$. Picking the positive solution we have that $y=\frac{1}{2}+\frac{\sqrt{77}}{14}$, and that

$$
x=13+\frac{1}{y}=13+\frac{1}{\frac{1}{2}+\frac{\sqrt{77}}{14}}=\frac{105+13 \sqrt{77}}{7+\sqrt{77}}
$$

(There is no need to perform the last simplification.)
4) The function f satisfies

$$
\begin{aligned}
f(1) & =1 \\
f(1)+f(2) & =a \\
f(1)+f(3) & =b \\
f(1)+f(2)+f(4) & =c \\
f(1)+f(2)+f(3)+f(6) & =a b \\
f(1)+f(2)+f(3)+f(4)+f(6)+f(12) & =b c
\end{aligned}
$$

Calculate $f(12)$. For which a, b, c can f be extended to a multiplicative function on the positive integers?

Solution: We can write this as

$$
\begin{aligned}
& F(1)=\sum_{d \mid 1} f(d)=1 \\
& F(2)=\sum_{d \mid 2} f(d)=a \\
& F(3)=\sum_{d \mid 3} f(d)=b \\
& F(4)=\sum_{d \mid 4} f(d)=c \\
& F(6)=\sum_{d \mid 6} f(d)=a b \\
& F(12)=\sum_{d \mid 12} f(d)=b c
\end{aligned}
$$

By Möbius inversion, we get that
$f(12)=\sum_{d \mid 12} F(d) \mu(12 / d)=1 * 0+a * 1+b * 0+c *(-1)+a b *(-1)+b c * 1=a-c-a b+b c$.
Since $F(6)=a b=F(2) * F(3)$ and $F(12)=b c=F(3) * F(4)$, and since 2, 3, 4 are primes or prime powers, F can be extended to a multiplicative function \tilde{F} on all positive integers (by arbitrarily assigning values on the other prime powers). Then the function $\tilde{f}=\mu * \tilde{F}$ is also multiplicative, and extends f to all positive integers. This holds for all values of a, b, c.
5) Show that 10 is a primitive root modulo 17 . List all quadratic residues mod 17 .

Solution: By tedious calculations, we see that the order of $3 \bmod 17$ is 16 , hence 3 is a primitive root mod 17 . Since

$$
3^{3}=27 \equiv 10 \quad \bmod 17
$$

and $\operatorname{gcd}(3,16)=1$, we have that 10 is another primitive root $\bmod 17$.
We have that an integer is a quadratic residue mod 17 iff it has even index w.r.t. the primitive root 10 , which occurs iff it has even index w.r.t. the primitive root 3 . We calculate $(\bmod 17)$

$$
3^{0} \equiv 3^{16} \equiv 1, \quad 3^{2} \equiv 9, \quad 3^{4} \equiv 13, \quad 3^{6} \equiv 15, \quad 3^{8} \equiv 16, \quad 3^{10} \equiv 8, \quad 3^{12} \equiv 4, \quad 3^{14} \equiv 2
$$

so the quadratic residues mod 17 are

$$
1,2,4,8,9,13,15,16
$$

6) The number 41 is a prime. Show that -1 is a quadratic residue module 41 , then find a solution to the congruence

$$
x^{2} \equiv-1 \quad \bmod 41
$$

Among the solutions (m, n) to

$$
m x+n \equiv 0 \quad \bmod 41
$$

find a pair with $0<|m|,|n| \leq 6$. Show that $41=m^{2}+n^{2}$.

Solution:

If we can find such m, n, x, then

$$
n^{2}=(-n)^{2} \equiv m^{2} x^{2} \equiv-m^{2} \quad \bmod 41,
$$

so $m^{2}+n^{2} \equiv 0 \bmod 41$, hence $41 \mid\left(m^{2}+n^{2}\right)$. However, we have that $0<m^{2}+n^{2}<2 * 41$, so $m^{2}+n^{2}=41$.
Since $41 \equiv 1 \bmod 4$, we have that $\binom{-1}{41}=(-1)^{\frac{41-1}{2}}=1$, so -1 is a quadratic residue mod 41. Listing the squares $\bmod 41$, we se that $7^{2} \equiv 8 \bmod 41,8^{2} \equiv 23 \bmod 41$, but $9^{2} \equiv-1$ $\bmod 41$, so the solutions to $x^{2} \equiv-1 \bmod 41$ are $x= \pm 9$. We pick $x=9$.

The congruence

$$
9 m+n \equiv 0 \quad \bmod 41
$$

is equivalent to the Diophantine equation

$$
41 k+9 m+n=0
$$

which has the solutions

$$
(k, m, n)=(t, s,-41 t-9 s), \quad t, s \in \boldsymbol{Z}
$$

Picking $t=-1, s=4$ gives $m=4, n=5$, satisfying $0<|m|,|n| \leq 6$. We check that $4^{2}+5^{2}=15+25=41$.

