Solutions to Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1
August 26, 2017

1) Find all integers x such that

$$
\begin{aligned}
x & \equiv 5
\end{aligned} \quad \bmod 11 .
$$

Solution: Since 7 is the inverse of $2 \bmod 13$, this is equivalent to

$$
\begin{array}{ll}
x \equiv 5 & \bmod 11 \\
x \equiv 7 & \bmod 13
\end{array}
$$

This gives that
$x=5+11 s \equiv 7 \bmod 13 \quad \Longrightarrow \quad 11 s \equiv 2 \bmod 13 \quad \Longrightarrow \quad s \equiv-1 \bmod 13$
so $x \equiv-6 \bmod 13 * 11$.
2) How many incongruent solutions are there to the congruence

$$
5 x^{3}+x^{2}+x+1 \equiv 0 \quad \bmod 32 ?
$$

Solution: $f(x)=5 x^{3}+x^{2}+x+1$ has the unique zero $r=1 \bmod 2$. We have that $f^{\prime}(x)=15 x^{2}+2 x+1, f^{\prime}(r)=0 \bmod 2$, and $f(r)=0 \bmod 4$, so both lifts of r, namely 1 and 3 , are zeroes mod 4 .
We continue to lift the zeroes to higher powers of two. Note that for each s such that $f(s)=0 \bmod 2^{k-1}$, if s is odd then $f^{\prime}(s)=0 \bmod 2$, hence either $f(s)=0 \bmod 2^{k}$, in which case Hensel's lemma guarantees that $s+2^{k-1}$ is also a zero $\bmod 2^{k}$, or $f(s) \neq 0 \bmod 2^{k}$, in which $s+2^{k-1}$ is not a zero $\bmod 2^{k}$, either.

We get: the lifts of $1 \bmod 4$ are $1 \bmod 8$ and $5 \bmod 8$, they are zeroes of f. The lifts of $3 \bmod 4$ are not zeroes of $f \bmod 4$.
The lifts of $1 \bmod 8$ are not zeroes. The lifts of $5 \bmod 8$ are $5 \bmod 16$ and $13 \bmod 16$, they are zeroes.
The lifts of $5 \bmod 16$ are not zeroes. The lifts of $13 \bmod 16$ are 13 $\bmod 32$ and $29 \bmod 32$, they are zeroes of f.

Thus there are two incogruent solutions mod 32.
3) Use the fact that 3 is a primitive root modulo 17 to find all solutions to the congruence

$$
10^{x} \equiv 5 \quad \bmod 17
$$

Solution: Taking indices w.r.t. the primitive root 3 , the equation becomes

$$
x \operatorname{ind}(10) \equiv \operatorname{ind}(5) \quad \bmod 16
$$

or

$$
3 x \equiv 5 \quad \bmod 16
$$

hence $x \equiv 7 \bmod 16$.
4) Let $x=[1 ; \overline{1,2}]$. Compute the value of x.

Solution: Let $y=x-1$, then

$$
y=\frac{1}{1+\frac{1}{2+y}}=\frac{2+y}{3+y}
$$

which has the positive root $\sqrt{3}-1$. Hence $x=\sqrt{3}$.
5) Let $p>3$ be a prime. Show that

$$
\left(\frac{3}{p}\right)=1 \quad \Longleftrightarrow \quad p \equiv \pm 1 \quad \bmod 12
$$

Solution: : This is exercise 11.2.2 in Rosen.
$6)$ Let $\omega(n)$ be the number of distinct primes that divide $n, \tau(d)$ be the number of positive divisors of d, and let μ be the Möbius function.
(a) Show that $n \mapsto 3^{\omega(n)}$ is multiplicative.
(b) Using the above, and the fact that τ and μ are multiplicative, show that

$$
\sum_{d \mid n}|\mu(d)| \tau(d)=3^{\omega(n)}
$$

Solution: : This exercise was given in the exam on August 23, 2012.

