Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1
March 12, 2017
LINKÖPINGS UNIVERSITET
Matematiska Institutionen
Examinator: Jan Snellman
Solutions

1) Determine all solutions to $180 x \equiv 120 \bmod 240$.

Solution: Since $\operatorname{gcd}(180,240)=60$, this is equivalent to $3 x \equiv 2 \bmod 4$, which is equivalent to $x \equiv 3 * 2 \equiv 2 \bmod 4$.
2) Find all solutions to the congruence

$$
x^{7}+x^{3}+x+1 \equiv 0 \quad \bmod 16
$$

Solution: Put $f(x)=x^{7}+x^{3}+x+1$. Then $f(1) \equiv 0 \bmod 2$, and $f^{\prime}(x)=7 x^{6}+3 x^{2}+1$, so $f^{\prime}(1) \equiv 1 \not \equiv 0 \bmod 2$, hence this solution lifts uniquely $\bmod 2^{n}$ for all n.
Lift to $2^{2}: f(1)=4 \equiv 0 \bmod 2^{2}$ 。
Lift to $2^{3}: f(1)=4 \not \equiv 0 \bmod 2^{3}$.

$$
\begin{aligned}
0 \equiv f\left(1+2^{2} t\right) & \equiv f(1)+2^{2} f^{\prime}(1) t \quad \bmod 2^{3} \\
& \equiv 4+4 * 11 t \bmod 2^{3} \\
& \equiv 4+4 t \quad \bmod 8 .
\end{aligned}
$$

So $t \equiv-1 \equiv 1 \bmod 2$, and $r_{1}=1$ lifts to $r_{2}=1+4 * 1=5$.
Lift to $2^{4}: r_{2}^{3} \equiv r_{2}^{7} \equiv 13 \bmod 16$, so $f\left(r_{2}\right) \equiv 0 \bmod 16$. Thus $r_{3}=r_{2}=5$ is a solution $\bmod 16$.
3) Consider the polynomial $f(t)=t^{4}+2 t^{2}-4$. Does f have a zero which is an integer? A zero mod 19? A zero mod 43? Find examples of such zeroes, when possible.
Solution: We write the equation $f(t)=0$ as

$$
\begin{equation*}
\left(t^{2}+1\right)^{2}=5 \tag{1}
\end{equation*}
$$

This shows that there are no integer solutions. Since

$$
\left(\frac{5}{43}\right)=\left(\frac{43}{5}\right)=\left(\frac{3}{5}\right)=\left(\frac{5}{3}\right)=\left(\frac{2}{3}\right)=-1
$$

the equation has no solution modulo 43 .
On the other hand,

$$
\left(\frac{5}{19}\right)=\left(\frac{19}{5}\right)=\left(\frac{-1}{5}\right)=1,
$$

so we can at least solve $u^{2} \equiv 5 \bmod 19$. In fact, the solutions are $u \equiv \pm 9$ $\bmod 19$.

The equation $t^{2}+1 \equiv u \equiv 9 \bmod 19$ is equivalent to $t^{2} \equiv 8 \bmod 19$. Since $8^{9} \equiv-1 \bmod 19$, the Euler Criteria gives that this equation has no solutions. On the other hand $t^{2}+1 \equiv u \equiv-9 \bmod 19$ is equivalent to $t^{2} \equiv-10 \equiv 9 \bmod 19$. This has the solutions $t \equiv \pm 3 \bmod 19$.
Thus, the solutions to $\left(t^{2}+1\right)^{2} \equiv 5 \bmod 19$ are precisely $t \equiv \pm 3 \bmod 19$.
4) Write 41 as a sum of two squares, and then write 205 as a sum of two squares. Finally, write 222 as a sum of four squares.
Solution: Since $p \equiv 1 \bmod 4$, we can use the method described in the lecture.
First, find a square root of $-1 \bmod 41 ; r=9$ works.
Secondly, put $x=-r / p=-9 / 41$, and put $n=\lceil\sqrt{p}\rceil=6$. We want to approximate x with a rational number a / b such that $b \leq n$ and

$$
|x-a / b| \leq \frac{1}{b(n+1)}<\frac{1}{b \sqrt{p}} .
$$

Thirdly, the continued fraction expansion of x is $[-1,1,3,1,1,4]$, and the third convergent is $-1 / 5$. We put $a=-1, b=5$ and $c=r b+p a=$ $9 * 5+41 *(-1)=(-4)$. Then $b^{2}+c^{2}=5^{2}+(-4)^{2}=25+36=41$.
Finally, we can express $41=4^{2}+5^{2}$. For this small prime, we could have found this easily by exhaustive search.
Now note that $205=41 * 5$. Since $5=2^{2}+1$, we can write

$$
205=N(4+5 i) N(2+i)=N((4+5 i)(2+i))=N(3+14 i),
$$

hence $205=3^{2}+14^{2}$.
Since $17=4^{2}+1^{2}$, it follows that $222=205+17=3^{2}+14^{2}+4^{2}+1^{2}$.
5) Find the continued fraction expansion of $\sqrt{17}$, then approximate $\sqrt{17}$ with a rational number, with an error less than 0.002 .

Solution: We get that $\sqrt{17}=[4, \overline{8}]$ and that the successive convergents are

$$
c_{0}=4, \quad, c_{1}=33 / 8, \quad c_{2}=268 / 65
$$

Since $c_{2}<\sqrt{17}<c_{1}$ and $c_{1}-c_{2}=1 / 520<2 / 1000$, we have that $|\sqrt{17}-33 / 8|<0.002$, as desired.
6) Let f be a multiplicative arithmetical function. If the argument n has prime factorization $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, show that

$$
\sum_{d \mid n} \mu(d) f(d)=\left(1-f\left(p_{1}\right)\right) \cdots\left(1-f\left(p_{k}\right)\right) .
$$

Use this to show that

$$
\sum_{d \mid n} \frac{\mu(d)}{d}=\frac{\phi(n)}{n}
$$

Solution: : This is two exercises in chapter 7 in the textbook.
7) Determine all positive integer solutions to $x^{2}+2 y^{2}=z^{2}$.

Solution: This is an exercise in chapter 13 in the textbook.

