Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1 March 12, 2017 LINKÖPINGS UNIVERSITET Matematiska Institutionen Examinator: Jan Snellman

Solutions

1) Determine all solutions to $180x \equiv 120 \mod 240$. Solution: Since gcd(180, 240) = 60, this is equivalent to $3x \equiv 2 \mod 4$,

which is equivalent to $x \equiv 3 * 2 \equiv 2 \mod 4$.

2) Find all solutions to the congruence

$$x^7 + x^3 + x + 1 \equiv 0 \mod 16.$$

Solution: Put $f(x) = x^7 + x^3 + x + 1$. Then $f(1) \equiv 0 \mod 2$, and $f'(x) = 7x^6 + 3x^2 + 1$, so $f'(1) \equiv 1 \not\equiv 0 \mod 2$, hence this solution lifts uniquely mod 2^n for all n.

Lift to 2^2 : $f(1) = 4 \equiv 0 \mod 2^2$. Lift to 2^3 : $f(1) = 4 \not\equiv 0 \mod 2^3$.

$$0 \equiv f(1+2^{2}t) \equiv f(1) + 2^{2}f'(1)t \mod 2^{3}$$
$$\equiv 4 + 4 * 11t \mod 2^{3}$$
$$\equiv 4 + 4t \mod 8.$$

So $t \equiv -1 \equiv 1 \mod 2$, and $r_1 = 1$ lifts to $r_2 = 1 + 4 * 1 = 5$. Lift to 2^4 : $r_2^3 \equiv r_2^7 \equiv 13 \mod 16$, so $f(r_2) \equiv 0 \mod 16$. Thus $r_3 = r_2 = 5$ is a solution mod 16.

3) Consider the polynomial $f(t) = t^4 + 2t^2 - 4$. Does f have a zero which is an integer? A zero mod 19? A zero mod 43? Find examples of such zeroes, when possible.

Solution: We write the equation f(t) = 0 as

$$(t^2 + 1)^2 = 5 \tag{1}$$

This shows that there are no integer solutions. Since

$$\left(\frac{5}{43}\right) = \left(\frac{43}{5}\right) = \left(\frac{3}{5}\right) = \left(\frac{5}{3}\right) = \left(\frac{2}{3}\right) = -1$$

the equation has no solution modulo 43.

On the other hand,

$$\left(\frac{5}{19}\right) = \left(\frac{19}{5}\right) = \left(\frac{-1}{5}\right) = 1,$$

so we can at least solve $u^2 \equiv 5 \mod 19$. In fact, the solutions are $u \equiv \pm 9 \mod 19$.

The equation $t^2 + 1 \equiv u \equiv 9 \mod 19$ is equivalent to $t^2 \equiv 8 \mod 19$. Since $8^9 \equiv -1 \mod 19$, the Euler Criteria gives that this equation has no solutions. On the other hand $t^2 + 1 \equiv u \equiv -9 \mod 19$ is equivalent to $t^2 \equiv -10 \equiv 9 \mod 19$. This has the solutions $t \equiv \pm 3 \mod 19$.

Thus, the solutions to $(t^2+1)^2 \equiv 5 \mod 19$ are precisely $t \equiv \pm 3 \mod 19$.

4) Write 41 as a sum of two squares, and then write 205 as a sum of two squares. Finally, write 222 as a sum of four squares.

Solution: Since $p \equiv 1 \mod 4$, we can use the method described in the lecture.

First, find a square root of $-1 \mod 41$; r = 9 works.

Secondly, put x = -r/p = -9/41, and put $n = \lceil \sqrt{p} \rceil = 6$. We want to approximate x with a rational number a/b such that $b \leq n$ and

$$|x - a/b| \le \frac{1}{b(n+1)} < \frac{1}{b\sqrt{p}}.$$

Thirdly, the continued fraction expansion of x is [-1, 1, 3, 1, 1, 4], and the third convergent is -1/5. We put a = -1, b = 5 and c = rb + pa = 9 * 5 + 41 * (-1) = (-4). Then $b^2 + c^2 = 5^2 + (-4)^2 = 25 + 36 = 41$.

Finally, we can express $41 = 4^2 + 5^2$. For this small prime, we could have found this easily by exhaustive search.

Now note that 205 = 41 * 5. Since $5 = 2^2 + 1$, we can write

$$205 = N(4+5i)N(2+i) = N((4+5i)(2+i)) = N(3+14i),$$

hence $205 = 3^2 + 14^2$.

Since $17 = 4^2 + 1^2$, it follows that $222 = 205 + 17 = 3^2 + 14^2 + 4^2 + 1^2$.

5) Find the continued fraction expansion of $\sqrt{17}$, then approximate $\sqrt{17}$ with a rational number, with an error less than 0.002.

Solution: We get that $\sqrt{17} = [4, \overline{8}]$ and that the successive convergents are

$$c_0 = 4$$
, $c_1 = 33/8$, $c_2 = 268/65$.

Since $c_2 < \sqrt{17} < c_1$ and $c_1 - c_2 = 1/520 < 2/1000$, we have that $|\sqrt{17} - 33/8| < 0.002$, as desired.

6) Let f be a multiplicative arithmetical function. If the argument n has prime factorization $n = p_1^{a_1} \cdots p_k^{a_k}$, show that

$$\sum_{d|n} \mu(d) f(d) = (1 - f(p_1)) \cdots (1 - f(p_k)).$$

Use this to show that

$$\sum_{d|n} \frac{\mu(d)}{d} = \frac{\phi(n)}{n}.$$

Solution: : This is two exercises in chapter 7 in the textbook.

7) Determine all positive integer solutions to $x^2 + 2y^2 = z^2$. Solution: This is an exercise in chapter 13 in the textbook.