Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1
June 7, 2018
LINKÖPINGS UNIVERSITET
Matematiska Institutionen
Examinator: Jan Snellman
The first problem is worth 4 points, the second problem 2; the rest are all worth 3 points. To receive full points, a solution needs to be complete. Indicate which theorems from the textbook that you have used, and include all auxillary calculations.

No aids, no calculators, tables, nor textbooks.
8 -10p: grade $3,11-13$ p: grade $4,14-18$ p grade 5 .

1) Determine all solutions to the congruence

$$
f(x) \equiv 0 \quad \bmod 2^{k}
$$

for $1 \leq k \leq 3$, when
(a) $f(x)=x^{2}+x$,
(b) $f(x)=2 x^{2}$.
2) Calculate

$$
\alpha=1+\frac{1}{2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\ldots}}}}
$$

3) Let $n=20000128$. Determine the positive integer k such that 2^{k} divides n but 2^{k+1} does not divide n.
4) Show that all sufficiently large integers can be expressed as a non-negative integer combination of 9 and 11, and determine the largest integer that can not be so expressed.
5) For which primes p is the congruence

$$
x^{2} \equiv 5 \quad \bmod p
$$

solvable?
6) Find a positive integer a which is a primitive root modulo 5^{k} for all integers $k \geq 1$.

