Solutions.

1) Determine all solutions to the congruence

$$
f(x) \equiv 0 \quad \bmod 2^{k}
$$

for $1 \leq k \leq 3$, when
(a) $f(x)=x^{2}+x$,
(b) $f(x)=2 x^{2}$.

Solution: In case (a), both 0 and 1 are solutions modulo 2 . We have that

$$
f^{\prime}(x)=2 x+1 \equiv 1 \quad \bmod 2,
$$

so both solutions lift uniquely to a solution $\bmod 4$. Clearly, 0 lifts to 0 , and we check that the lift $3=1+1 * 2$ is a solution $\bmod 4$ (whereas $1=1+0 * 2$ is not). Similarly, the solution $x \equiv 0 \bmod 4$ lifts to $x \equiv 0$ $\bmod 8$, and $x \equiv 3 \bmod 4$ lifts to $x \equiv 7 \bmod 8$.
In case (b), both 0 and 1 are again solutions mod 2 . We have that $f^{\prime}(x)=4 x \equiv 0 \bmod 2$, so the solutions $\bmod 2$ will not lift uniquely to solutions mod 4; rather, they either lift in all possible ways or do not lift at all.
Since $x=0$ is a zero of $f \bmod 4$, it follows that $x=2$ is as well. However, $x=1$ is not a zero $\bmod 4$, so neither is $x=3$. Thus the solutions \bmod 4 is $x \equiv 0 \bmod 4$ together with $x \equiv 2 \bmod 4$.
Since $f(0)=0, f(2)=8$ are both zero mod 8 , we get that both these zeroes mod 4 lift in all possible ways to yield zeroes mod 8; these are therefore

$$
x \equiv 0,2,4,6 \quad \bmod 8 .
$$

2) Calculate

$$
\alpha=1+\frac{1}{2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\ldots}}}}
$$

Solution: Since

$$
\alpha=1+\frac{1}{2+\frac{1}{\alpha}}
$$

we get that

$$
\alpha-1=\frac{1}{2+1 / \alpha}=\frac{\alpha}{2 \alpha+1}
$$

so that α is the positive root of

$$
(\alpha-1)(2 \alpha+1)=\alpha,
$$

which is $\alpha=\frac{1}{2}+\frac{\sqrt{3}}{2}$.
3) Let $n=20000128$. Determine the positive integer k such that 2^{k} divides n but 2^{k+1} does not divide n.

Solution: Note that

$$
n=2 * 10^{7}+2^{7}=2^{8} * 5^{7}+2^{7} .
$$

We see that n is divisible by 2^{7} but not 2^{8}.
4) Show that all sufficiently large integers can be expressed as a non-negative integer combination of 9 and 11, and determine the largest integer that can not be so expressed.
Solution: Since $\operatorname{gcd}(9,11)=1=9 * 5+11 *(-4)$, the Diophantine equation

$$
9 x+11 y=d
$$

is solvable for all d. However, it is not necessarily solvable in non-negative integers; for instance, if $1 \leq d \leq 8$ there is no solution with non-begative integers.
The general solution (in integers) is

$$
(x, y)=(5 d,-4 d)+t(-11,9), \quad t \in \boldsymbol{Z} .
$$

If $x, y \geq 0$, then

$$
5 d-11 t \geq 0, \quad-4 d+9 t \geq 0,
$$

or equivalently,

$$
44 d \leq 99 t \leq 45 d
$$

We see that once $d \geq 99$ there is certainly at least one positive integer t which works. This proves the first part.
For the second part, we put, for $0 \leq j \leq 8$,

$$
r_{j}=11 j,
$$

so
$r_{0}=0, r_{1}=11, r_{2}=22, r_{3}=33, r_{4}=44, r_{5}=55, r_{6}=66, r_{7}=77, r_{8}=88$.

Then, since 9 and 11 are relatively prime, all r_{j} are non-congruent modulo 9 , and thus constitute a complete set of residues modulo 9 . All r_{j} are of course non-negative integer combinations of 9 and 11 , and so is $r_{j}+9 k$ for all integers $k \geq 0$. We get that all integers $\geq r_{8}$ can be expressed as a non-negative integer combination of 9 and 11.
On the other hand, $r_{j}-9=9 *(-1)+11 * j$ is not a non-negative integer combination of 9 and 11, since you get a new solution by adding $s(11,-9)$ to an old solution, and $0 \leq j \leq 8$.
We conclude that the largest integer d which can not be expressed as a non-negative integer combination of 9 and 11 is

$$
r_{8}-9=88-9=79
$$

5) For which primes p is the congruence

$$
x^{2} \equiv 5 \quad \bmod p
$$

solvable?
Solution: For odd $p \neq 5$, the congruence is solvable if and only if

$$
\left(\frac{5}{p}\right)=1
$$

Since $5 \equiv 1 \bmod 4$, quadratic reciprocity gives that cdis

$$
\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)
$$

Since

$$
0^{2} \equiv 0,1^{2} \equiv 1,2^{2} \equiv 4,3^{2} \equiv 4,4^{2} \equiv 1 \quad \bmod 5
$$

the quadratic residues $\bmod 5$ are 1,4 , thus we should have

$$
p \equiv 1,4 \bmod 5
$$

for the original congruence to be solvable.
When $p=2$, we check that $5^{2} \equiv 5 \bmod 2$, so the congruence is solvable also in this case.
When $p=5,5^{2} \equiv 5 \bmod 2$, so the congruence is solvable also in this case.
6) Find a positive integer a which is a primitive root modulo 5^{k} for all integers $k \geq 1$.
Solution: : Since $a=2$ has order 4 modulo 5 , it is a primitive root modulo 5. The maximal order of an integer modulo 25 is $\phi\left(5^{2}\right)=5^{2}-5=$ $20=2 * 2 * 5$. We check that $2^{2}, 2^{4}, 2^{10}$ are all non-congruent to 1 mod 25 , so $a=2$ has order 20 and is a primitive root, modul0 25 .
Since $a=2$ is a primitive root modulo 5 and modulo 5^{2}, it is a primitive root modulo 5^{k} for all positive k, by a theorem in the textbook.

