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1) Find all (x, y) ∈ Z2 such that (x, y) is a solution to 3x− 7y = 1, and x, y are relatively prime.

Solution: By Bezout, if 3x − 7y = 1 then gcd(x, y) = 1, thus any solution pair will be relatively
prime.

We have that gcd(x, y) = 1 and that 3 ∗ (−2) − 7 ∗ (−1) = 1, so the set of solutions are (x, y) =
(−2,−1) + n(−7,−3).

2) Write, if possible, 6! as a sum of two squares.

Solution: 6! = 2 ∗ 3 ∗ 4 ∗ 5 ∗ 6 = 24 ∗ 32 ∗ 5 = 720, which factors over the Gaussian Integers as

6! = (1+ i)4 ∗ 32 ∗ (1+ 2i)(1− 2i) = 22 ∗ 3 ∗ (1+ 2i) × 22 ∗ 3 ∗ (1− 2i)

The norm of the first factor is 122 ∗ (1+ 22) = 122 + 242 = 720.
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with a, b, c, d ∈ N then b > 7, d > 2.

Solution: By cubing,
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which is true.

Put α0 = α = 3
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In fact, it is easy to show that 9/4 < α1 < 7/3. Once we have proved this, it follows that
1/4 < α1 − 1 < 1/3, so 3 < 1

α1−2
= α2 < 4, so a2 = 3.

Thus, the CF expansion of 3
√
3 starts as [1, 2, 3, . . . ], and the first convergents are 1, 3/2, 10/7.

Since no rational numbers can approximate 3
√
3 better than the convergent, except by having larger

denominators, the assertion follows.

So, how to prove that 9/4 < α1? This follows since α0 < 13/9, hence α0 − 1 < 4/9, hence
α1 > 9/4.

4) (x, y) = (10, 3) is a positive solution to Pell’s equation x2 − 11y2 = 1. Find another!

Solution:
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√
11,

so (x, y) = (199, 60) is another solution.



5) Let f(x) = x2 − x + 1. Show that, modulo 7, both zeroes of f(x) are primitive roots. Determine
the number of zeroes of f(x) modulo 7n for all n ≥ 2.
Solution: 3, 5 are the zeroes mod 7. A direct calculation shows that they have multiplicative order
6. Since f ′(x) = 2x−1, we calculate 2∗3−1 = 5, 2∗5−1 = 9, both non-congruent to 7. Hensel’s
lemma yields that both zeroes lift uniquely to a zero mod 7n for any positive n; consequently, there
are exactly 2 zeroes mod 7n.

6) Define the arithmetical function f by

f(n) =
∑
d|n

µ(d)

d
,

where µ is the Möbius function. Is fmultiplicative? Denote by Supp(n) the set of primes dividing
n. Does the value of f(n) depend only on Supp(n)?

Solution: : Let F(d) = 1/d. Then F is multiplicative. Since f = µ ∗ F, f is also multiplicative.

We calculate f(pa) where p is prime. Then

f(pa) =

a∑
`=0

µ(p`)/` = µ(1)/1+ µ(p)/p = 1− 1/p.

So
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which depends on the pi’s making up the support, but not the ai’s, the exponents.

7) Show that the polynomial f(x) = x4+1 does not factor over Z, i.e., can not be written as a product
f(x) = a(x)b(x) with both a(x), b(x) of lower degree, yet f(x) factors modulo any prime!

(Hint: consider the cases p = 2, p ≡ 1, 5 mod 8, p ≡ 7 mod 8, p ≡ 3 mod 8)

Solution: : The polynomial has no real zeroes, hence no linear factors over R. A case-by-case
study shows that it cannot be written as x4 + 1 = (x2 + ax+ b)(x2 + cx+ d) with z, b, c, d ∈ Z.
It is thus irreducible over Z.

Over Z2, x4 + 1 = (x+ 1)4.

Now let p be an odd prime, and consider f(x) ∈ Zp[x].

If p ≡ 1 mod 4 then
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= 1, so −1 has a square root, say q2 = −1. Then x4 + 1 = (x2 −
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If p ≡ 7 mod 8,
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If p ≡ 3 mod 8,
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= (−1)(−1) = 1, so −2 = q2 for some q, and x4 + 1 =
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