Solutions to Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1
June 4, 2019
LINKÖPINGS UNIVERSITET
Matematiska Institutionen
Examinator: Jan Snellman

1) Find all $(x, y) \in Z^{2}$ such that (x, y) is a solution to $3 x-7 y=1$, and x, y are relatively prime.

Solution: By Bezout, if $3 x-7 y=1$ then $\operatorname{gcd}(x, y)=1$, thus any solution pair will be relatively prime.
We have that $\operatorname{gcd}(x, y)=1$ and that $3 *(-2)-7 *(-1)=1$, so the set of solutions are $(x, y)=$ $(-2,-1)+n(-7,-3)$.
2) Write, if possible, 6! as a sum of two squares.

Solution: $6!=2 * 3 * 4 * 5 * 6=2^{4} * 3^{2} * 5=720$, which factors over the Gaussian Integers as

$$
6!=(1+i)^{4} * 3^{2} *(1+2 i)(1-2 i)=2^{2} * 3 *(1+2 i) \quad \times \quad 2^{2} * 3 *(1-2 i)
$$

The norm of the first factor is $12^{2} *\left(1+2^{2}\right)=12^{2}+24^{2}=720$.
3) Show that

$$
\frac{10}{7}<\sqrt[3]{3}<\frac{13}{9}<\frac{3}{2}
$$

and that if

$$
\frac{10}{7}<\frac{a}{b}<\sqrt[3]{3}<\frac{c}{d}<\frac{3}{2}
$$

with $a, b, c, d \in \mathbf{N}$ then $b>7, d>2$.
Solution: By cubing,

$$
\frac{10}{7}<\sqrt[3]{3}<\frac{13}{9} \quad \Longleftrightarrow \quad \frac{1000}{343}<3<\frac{2197}{729}
$$

which is true.
Put $\alpha_{0}=\alpha=\sqrt[3]{3}$. Then $1<10 / 7<\alpha_{0}<3 / 2<2$, so $a_{0}=1, \alpha_{1}=\frac{1}{\alpha_{0}-1}=\frac{1}{\sqrt[3]{3}-1}$. Then $2<\alpha_{1}<7 / 3$, so $a_{1}=2, \alpha_{2}=\frac{1}{\alpha_{1}-a_{1}}=\frac{1}{\frac{1}{\sqrt[3]{3}-1}-2}$.
In fact, it is easy to show that $9 / 4<\alpha_{1}<7 / 3$. Once we have proved this, it follows that $1 / 4<\alpha_{1}-1<1 / 3$, so $3<\frac{1}{\alpha_{1}-2}=\alpha_{2}<4$, so $a_{2}=3$.
Thus, the CF expansion of $\sqrt[3]{3}$ starts as $[1,2,3, \ldots]$, and the first convergents are $1,3 / 2,10 / 7$. Since no rational numbers can approximate $\sqrt[3]{3}$ better than the convergent, except by having larger denominators, the assertion follows.
So, how to prove that $9 / 4<\alpha_{1}$? This follows since $\alpha_{0}<13 / 9$, hence $\alpha_{0}-1<4 / 9$, hence $\alpha_{1}>9 / 4$.
4) $(x, y)=(10,3)$ is a positive solution to Pell's equation $x^{2}-11 y^{2}=1$. Find another!

Solution:

$$
(10+3 \sqrt{11})^{2}=199+60 \sqrt{11}
$$

so $(x, y)=(199,60)$ is another solution.
5) Let $f(x)=x^{2}-x+1$. Show that, modulo 7 , both zeroes of $f(x)$ are primitive roots. Determine the number of zeroes of $f(x)$ modulo 7^{n} for all $n \geq 2$.
Solution: 3,5 are the zeroes mod 7. A direct calculation shows that they have multiplicative order 6. Since $f^{\prime}(x)=2 x-1$, we calculate $2 * 3-1=5,2 * 5-1=9$, both non-congruent to 7 . Hensel's lemma yields that both zeroes lift uniquely to a zero $\bmod 7^{n}$ for any positive n; consequently, there are exactly 2 zeroes $\bmod 7^{n}$.
6) Define the arithmetical function f by

$$
f(n)=\sum_{d \mid n} \frac{\mu(d)}{d}
$$

where μ is the Möbius function. Is f multiplicative? Denote by $\operatorname{Supp}(n)$ the set of primes dividing n. Does the value of $f(n)$ depend only on $\operatorname{Supp}(n)$?
Solution: : Let $F(d)=1 / d$. Then F is multiplicative. Since $f=\mu * F$, f is also multiplicative.
We calculate $f\left(p^{a}\right)$ where p is prime. Then

$$
f\left(p^{a}\right)=\sum_{\ell=0}^{a} \mu\left(p^{\ell}\right) / \ell=\mu(1) / 1+\mu(p) / p=1-1 / p
$$

So

$$
f\left(p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}\right)=\prod_{j=1}^{r} f\left(p_{j}^{a_{j}}\right)=\prod_{j=1}^{r}\left(1-1 / p_{j}\right)
$$

which depends on the p_{i} 's making up the support, but not the a_{i} 's, the exponents.
7) Show that the polynomial $f(x)=x^{4}+1$ does not factor over Z, i.e., can not be written as a product $f(x)=a(x) b(x)$ with both $a(x), b(x)$ of lower degree, yet $f(x)$ factors modulo any prime!
(Hint: consider the cases $p=2, p \equiv 1,5 \bmod 8, p \equiv 7 \bmod 8, p \equiv 3 \bmod 8$)
Solution: : The polynomial has no real zeroes, hence no linear factors over \mathbf{R}. A case-by-case study shows that it cannot be written as $x^{4}+1=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$ with $z, b, c, d \in Z$. It is thus irreducible over \mathbf{Z}.
Over $\mathbf{Z}_{2}, x^{4}+1=(x+1)^{4}$.
Now let p be an odd prime, and consider $f(x) \in \mathbf{Z}_{p}[x]$.
If $p \equiv 1 \bmod 4$ then $\left(\frac{-1}{p}\right)=1$, so -1 has a square root, say $q^{2}=-1$. Then $x^{4}+1=\left(x^{2}-\right.$ q) $\left(x^{2}+q\right)$.

If $p \equiv 7 \bmod 8,\left(\frac{2}{q}\right)=1$, so $2=q^{2}$ for some q, and $x^{4}+1=\left(x^{2}-\frac{2}{q} x+1\right)\left(x^{2}+\frac{2}{q} x+1\right)$.
If $p \equiv 3 \bmod 8,\left(\frac{-2}{q}\right)=\left(\frac{-1}{q}\right)\left(\frac{2}{q}\right)=(-1)(-1)=1$, so $-2=q^{2}$ for some q, and $x^{4}+1=$ $\left(x^{2}-\frac{2}{q} x-1\right)\left(x^{2}+\frac{2}{q} x-1\right)$.

