Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1
Nov 1, 2019
LINKÖPINGS UNIVERSITET
Matematiska Institutionen
Examinator: Jan Snellman

SOLUTIONS

1) If a, b are relatively prime positive integers, and $a b=c^{n}$, with n, c positive integers, show that there exists positive integers d, e such that $a=d^{n}$ and $\mathrm{b}=\mathrm{e}^{\mathrm{n}}$.
Solution: The inelegant solution of using unique factorization into primes is acceptable.
2) Find all solutions in positive integers to the Diophantine equation

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{7}
$$

Solution: Multiply by $7 x y$ to obtain

$$
7 y+7 x=x y
$$

since 7 divides the LHS, we get that $7 \mid x y$. Since 7 is a prime, it divides either x or y, or both. A case study yields that the only solutions are

$$
(x, y) \in\{(8,56),(14,14),(56,8)\}
$$

3) For which positive integers n does it hold that $3 \phi(n)=\phi(3 n)$, where ϕ denotes the Euler phi-function?
Solution: Write $n=3^{a} m$, where 3 does not divide m. If $a>0$ then

$$
\frac{\phi(3 n)}{\phi(n)}=\frac{\phi\left(3^{a+1}\right) \phi(m)}{\phi\left(3^{a}\right) \phi(m)}=\frac{3^{a+1}-3^{a}}{3^{a}-3^{a-1}}=3
$$

but if $a=0$ then

$$
\frac{\phi(3 n)}{\phi(n)}=\frac{\phi(3) \phi(n)}{\phi(n)}=2
$$

4) Calculate $\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)$ for all positive integers $n ; \mu$ is the Möbius function.
Solution: Given four consecutive integers, exactly one is divisible by four. That integer is not square-free, and its Möbius value is zero.
5) Let $p \geq 7$ be a prime. Show that there exist a positive quadratic residue n of p such that $n+1$ is a quadratic residue of p as well.
Solution: We have that $\left(\frac{2}{p}\right)\left(\frac{5}{p}\right)\left(\frac{10}{p}\right)=\left(\frac{100}{p}\right)=\left(\frac{10}{p}\right)^{2}=1$. Thus at least one of $2,5,10$ is a quadratic residue $\bmod p .1,4,9$ are q.r., as well. Hence, there are $n, n+1$ q.r. with $n \leq 9$. We have used that $p \notin\{2,5\}$.
6) Given that

$$
\sqrt{17}=[4 ; \overline{8}]=4+\frac{1}{8+\frac{1}{8+\frac{1}{\ddots}}},
$$

find the continued fraction expansion of $\frac{1}{\sqrt{17}}$ and $-\frac{1}{\sqrt{17}}$.
Solution: Clearly,

$$
\frac{1}{\sqrt{17}}=\frac{1}{4+\frac{1}{8+\frac{1}{8+\frac{1}{\ddots}}}}=[0 ; 4, \overline{8}]
$$

It is somewhat tricker to show that

$$
-\frac{1}{\sqrt{17}}=\frac{-1}{4+\frac{1}{8+\frac{1}{8+\frac{1}{\ddots}}}}=-1+\frac{1}{1+\frac{1}{3+\frac{1}{8+\frac{1}{\ddots}}}}=[-1 ; 1,3, \overline{8}] .
$$

7) Show that the integer $m>2$ has a primitive root if and only if the congruence $x^{2} \equiv 1 \bmod m$ has precisely the solutions $x \equiv \pm 1 \bmod m$.
Hint: Recall that if $\mathrm{k} \geq 3$ is an integer, then 5 has (multiplicative) order $2^{\mathrm{k}-2}$ modulo 2^{k}.

Solution: This is an exercise from the textbook.

