Number theory, Talteori 6hp, Kurskod TATA54, Provkod TEN1
Nov 1, 2019
LINKÖPINGS UNIVERSITET
Matematiska Institutionen
Examinator: Jan Snellman
All problems are worth 3 points. To receive full points, a solution needs to be complete. Prove your assertions, indicate which theorems from the textbook that you have used, and include all auxillary calculations.

No aid, no calculators, tables, nor textbooks.

3:8p 4:13p 5:18p

1) If a, b are relatively prime positive integers, and $a b=c^{n}$, with n, c positive integers, show that there exists positive integers d, e such that $a=d^{n}$ and $b=e^{n}$.
2) Find all solutions in positive integers to the Diophantine equation

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{7}
$$

3) For which positive integers n does it hold that $3 \phi(n)=\phi(3 n)$, where ϕ denotes the Euler phi-function?
4) Calculate $\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)$ for all positive integers $n ; \mu$ is the Möbius function.
5) Let $p \geq 7$ be a prime. Show that there exist a positive quadratic residue n of p such that $n+1$ is a quadratic residue of p as well.
6) Given that

$$
\sqrt{17}=[4 ; \overline{8}]=4+\frac{1}{8+\frac{1}{8+\frac{1}{\ddots}}}
$$

find the continued fraction expansion of $\frac{1}{\sqrt{17}}$ and $-\frac{1}{\sqrt{17}}$.
7) Show that the integer $m>2$ has a primitive root if and only if the congruence $x^{2} \equiv 1 \bmod m$ has precisely the solutions $x \equiv \pm 1 \bmod m$.
Hint: Recall that if $\mathrm{k} \geq 3$ is an integer, then 5 has (multiplicative) order $2^{\mathrm{k}-2}$ modulo 2^{k}.

