LINKÖPINGS UNIVERSITET

Matematiska Institutionen

Examinator: Jan Snellman

1) Find all integers n such that $n+1$ is not divisible by 3 and $n+2$ is divisible by 5 .
Solution: Clearly, $n+1$ is indivisible by 3 iff $n \equiv 0,1 \bmod 3$, and $n+2$ is divisible by 5 iff $n \equiv 3 \bmod 5$. By the Chinese remainder theorem, the case $n \equiv 0 \bmod 3$ and simultaneously $n \equiv 3 \bmod 5$ is equivalent to $n \equiv 3$ $\bmod 15$. Similarly, $n \equiv 1 \bmod 3$ and simultaneously $n \equiv 3 \bmod 5$ iff $n \equiv 13$ $\bmod 15$. In conclusion, $n \equiv 3,13 \bmod 15$.
2) Let n be a positive integer. How many solutions are there to the congruence $x^{3}+x \equiv 0 \bmod 2^{n}$?
Solution: Modulo 2, both 0 and 1 are roots, but modulo 4 only 0 is a root. The formal derivative is $3 x^{2}+1$, which evaluates to 1 at zero, so this zero will lift uniquely henceforth.
3) How many primitive roots are there mod 7? Find them all. For each primitive root $a \bmod 7$ that you find, check which of the "lifts"

$$
a+7 t, \quad 0 \leq t \leq 6
$$

are primitive roots mod 49.
Solution: We see that 2 is not a primitive root modulo 7 , but 3 is. Since $\phi(7)=6$, the primitive roots modulo 7 are 3^{1} and $3^{5} \equiv 5 \bmod 7$.
A dumb search reveals that all lifts of 3 except $31=3+4 * 7$ are primitive roots modulo 49 , as are all lifts of 5 except $19=5+2 * 7$.
4) Determine the (periodic) continued fraction expansion of $\sqrt{3}$ by finding the minimal algebraic relation satisfied by $\sqrt{3}-1$.
Solution: Put $a=\sqrt{3}-1, a^{*}=-\sqrt{3}-1$. Then a, a^{*} are the zeroes of $(x-a)\left(x-a^{*}\right)=x^{2}+2 x-2$. So $a(3+a)=2+a$, hence $a=(2+a) /(3+a)$. It follows that

$$
a=\frac{1}{1+\frac{1}{2+a}}=[0 ; \overline{1,2}]
$$

whence $\sqrt{3}=a+1=[1 ; \overline{1,2}]$.
5) For a positive integer n, let $[n]=\{1,2, \ldots, n\},[n]^{2}=\{(i, j) \mid i, j \in[n]\}$, $C(n)=\left\{(i, j) \in[n]^{2} \mid \operatorname{gcd}(i, j)=1\right\}$. Show that

$$
\# C(n)=\sum_{d=1}^{n} \mu(d)\left\lfloor\frac{n}{d}\right\rfloor^{2} .
$$

Solution: For any predicate P, we say that $[P]=1$ if P is true, and zero otherwise. With this notation,

$$
\# C(n)=\sum_{i=1}^{n} \sum_{j=1}^{n}[\operatorname{gcd}(i, j)=1]
$$

By Möbius inversion, $[n=1]=\sum_{d \mid n} \mu(d)$, and in particular

$$
[\operatorname{gcd}(i, j)=1]=\sum_{d \mid \operatorname{gcd}(i, j)} \mu(d)
$$

Hence

$$
\begin{aligned}
\# C(n) & =\sum_{i=1}^{n} \sum_{j=1}^{n}[\operatorname{gcd}(i, j)=1] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{d \mid \operatorname{gcd}(i, j)} \mu(d) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{d=1}^{n}[d \mid \operatorname{gcd}(i, j)] \mu(d) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{d=1}^{n}[d \mid i][d \mid j] \mu(d) \\
& =\left(\sum_{d=1}^{n} \mu(d)\right)\left(\sum_{i=1}^{n}[d \mid i]\right)\left(\sum_{j=1}^{n}[d \mid j]\right) \\
& =\sum_{d=1}^{n} \mu(d)\left\lfloor\frac{n}{d}\right\rfloor^{2}
\end{aligned}
$$

where we have used that $[d \mid \operatorname{gcd}(i, j)]=[d \mid i][d \mid j]$ and that $\sum_{i=1}^{n}[d \mid i]=\left\lfloor\frac{n}{d}\right\rfloor$.

