Matematiska Institutionen

Examinator: Jan Snellman
Each problem is worth 3 points. To receive full points, a solution needs to be complete. Indicate which theorems from the textbook that you have used, and include all auxillary calculations.

You may use the following tools:

- pen and paper
- your textbook
- a dumb calculator
- your telephone, but only for calling the examiner and ask for clarification on the exercises

In particular, you may not use a computer.
8 p to pass, 10 p for grade 4,12 p for grade 5 .

1) Find all integers n such that $n+1$ is not divisible by 3 and $n+2$ is divisible by 5 .
2) Let n be a positive integer. How many solutions are there to the congruence $x^{3}+x \equiv 0 \bmod 2^{n} ?$
3) How many primitive roots are there mod 7? Find them all. For each primitive root $a \bmod 7$ that you find, check which of the "lifts"

$$
a+7 t, \quad 0 \leq t \leq 6
$$

are primitive roots mod 49.
4) Determine the (periodic) continued fraction expansion of $\sqrt{3}$ by finding the minimal algebraic relation satisfied by $\sqrt{3}-1$.
5) For a positive integer n, let

$$
\begin{aligned}
{[n] } & =\{1,2, \ldots, n\} \\
{[n]^{2} } & =\{(i, j) \mid i, j \in[n]\} \\
C(n) & =\left\{(i, j) \in[n]^{2} \mid \operatorname{gcd}(i, j)=1\right\}
\end{aligned}
$$

Show that

$$
\# C(n)=\sum_{d=1}^{n} \mu(d)\left\lfloor\frac{n}{d}\right\rfloor^{2}
$$

Here $\# S$ is the cardinality of S, μ is the Möbius function, and $\lfloor x\rfloor$ is the fractional part of x, i.e., the largest integer n such that $n \leq x$.

