Talteori 6hp, Kurskod TATA54, Provkod TEN1 Juni 03, 2021 LINKÖPINGS UNIVERSITET Matematiska Institutionen Examinator: Jan Snellman

Every exercise is worth 3 points, for which a complete solution is needed. 8p is enough for grade 3, 11p for grade 4, 14p for grade 5.

- 1) Låt T be a right triangle with integer side lengths (including the hypotenuse). Show that the area of T is an integer.
- 2) Let x have the continued fraction expansion $[1; \overline{2, 3}]$. Determine x.
- 3) Let 2 be prime, and assume that the integer a is relatively prime to p and to q.
 - (a) If $\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = 1$, what can be said about the solubility of the congruence $x^2 \equiv a \mod pq$?

(b) What if
$$\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = -1$$
?
(c) What if $\left(\frac{a}{p}\right) \neq \left(\frac{a}{q}\right)$?

4) Let $f(x) = x^4 - 1$.

- (a) List all zeroes of f(x) in Z_{125}
- (b) List all zeroes of f(x) in Z_{49}
- (c) For n > 2, give a sharp lower bound of the number of zeroes of f(x) in Z_n .
- 5) Find all pairs (x, y), with x, y Gaussian integers, that are soultions to the linear Diophantine equation

(2+i)x + (1+i)y = i

6) The following table show that 2 is a primitive root modulo 29.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2 ^k mod 29	1	2	4	8	16	3	6	12	24	19	9	18	7	14	28
k	15	16	17	18	19	20	21	22	23	24	25	26	27	28	
2 ^k mod 29	27	25	21	13	26	23	17	5	10	20	11	22	15	1	

Now solve

$$7^x \equiv -5 \mod 29$$

7) Show that for each positive integer n it holds that

$$\mu(n)^2 = \sum_{d|n} \mu(d) 2^{\omega(n/d)}$$

where $\omega(k)$ denotes the number of distinct prime factors of k.