Talteori 6hp, Kurskod TATA54, Provkod TEN1
Juni 03, 2021
LINKÖPINGS UNIVERSITET
Matematiska Institutionen
Examinator: Jan Snellman
Every exercise is worth 3 points, for which a complete solution is needed. 8 p is enough for grade 3 , 11 p for grade 4,14 p for grade 5 .

1) Låt T be a right triangle with integer side lengths (including the hypotenuse). Show that the area of T is an integer.
2) Let x have the continued fraction expansion $[1 ; \overline{2,3}]$. Determine x.
3) Let $2<p<q$ be prime, and assume that the integer a is relatively prime to p and to q.
(a) If $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)=1$, what can be said about the solubility of the congruence $x^{2} \equiv a \bmod p q$?
(b) What if $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)=-1$?
(c) What if $\left(\frac{\mathfrak{a}}{\mathrm{p}}\right) \neq\left(\frac{\mathrm{a}}{\mathrm{q}}\right)$?
4) Let $f(x)=x^{4}-1$.
(a) List all zeroes of $f(x)$ in \mathbf{Z}_{125}
(b) List all zeroes of $f(x)$ in Z_{49}
(c) For $n>2$, give a sharp lower bound of the number of zeroes of $f(x)$ in Z_{n}.
5) Find all pairs (x, y), with x, y Gaussian integers, that are soultions to the linear Diophantine equation

$$
(2+\mathfrak{i}) x+(1+\mathfrak{i}) y=\mathfrak{i}
$$

6) The following table show that 2 is a primitive root modulo 29 .

Now solve

$$
7^{x} \equiv-5 \quad \bmod 29
$$

7) Show that for each positive integer n it holds that

$$
\mu(\mathrm{n})^{2}=\sum_{\mathrm{d} \mid \mathrm{n}} \mu(\mathrm{~d}) 2^{\omega(\mathrm{n} / \mathrm{d})}
$$

where $\omega(k)$ denotes the number of distinct prime factors of k.

