Number Theory What is number theory?

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

1 Analytic Number Theory

- Prime counting
- Partitions
- 2 Geometry of Numbers
 - Lattice points in convex bodies
- 3 Arithmetric algebraic geometry
 - Pythagorean tripples

- 4 Connections to Algebra
 - In the course!
 - Not in the course
- **5** Elementary Number Theory
 - Elementary?
- 6 This course
 - Literature
 - Lectures

1 Analytic Number Theory

- Prime counting
- Partitions

2 Geometry of Numbers

- Lattice points in convex bodies
- Arithmetric algebraic

geometry

Pythagorean tripples

- 4 Connections to Algebra
 - In the course!
 - Not in the course
- 5 Elementary Number Theory
 - Elementary?
 - This course
 - Literature
 - Lectures

1 Analytic Number Theory

- Prime counting
- Partitions

2 Geometry of Numbers

- Lattice points in convex bodies
- 3 Arithmetric algebraic geometry
 - Pythagorean tripples

- 4 Connections to Algebra
 - In the course!
 - Not in the course
- 5 Elementary Number Theory
 - Elementary?
 - This course
 - Literature
 - Lectures

1 Analytic Number Theory

- Prime counting
- Partitions

2 Geometry of Numbers

- Lattice points in convex bodies
- 3 Arithmetric algebraic geometry
 - Pythagorean tripples

4 Connections to Algebra

- In the course!
- Not in the course
- Elementary Number Theory
 - Elementary?
- This course
 - Literature
 - Lectures

1 Analytic Number Theory

- Prime counting
- Partitions

2 Geometry of Numbers

- Lattice points in convex bodies
- 3 Arithmetric algebraic geometry
 - Pythagorean tripples

4 Connections to Algebra

- In the course!
- Not in the course
- 5 Elementary Number Theory
 - Elementary?
 - This course
 - Literature
 - Lectures

1 Analytic Number Theory

- Prime counting
- Partitions

2 Geometry of Numbers

- Lattice points in convex bodies
- 3 Arithmetric algebraic geometry
 - Pythagorean tripples

4 Connections to Algebra

- In the course!
- Not in the course
- 5 Elementary Number Theory
 - Elementary?
- 🜀 This course
 - Literature
 - Lectures

Definition

$$\pi(x) = \sum_{k \le x} \text{IsPrime}(x)$$

 $\pi(x) \sim \frac{x}{\log x}$ as $x \to \infty$.

g Hadaman)

Definition

Prime density function $\mathbf{p}(x) = \pi(x)/x$.

Prime number theorem: $\mathbf{p}(x) \sim 1/\log(x)$.

Example

 $\begin{array}{l} \mbox{Probability that a positive integer} \leq 1000 \mbox{ is prime is} \\ {\bf p}(1000) \approx \frac{1}{\log(1000)} = 0.145. \mbox{ Actually 168 primes} \leq 1000. \end{array}$

Theorem

$$\mathbf{p}(x) = \sum_{k=1}^{n-1} \frac{(k-1)!}{\log(x)^k} + \mathcal{O}\left(\frac{(n-1)!}{(\log(x)^n)}\right) \text{ as } x \to \infty.$$

Check the first 3 approximations, from 100 to 1000:

Definition

n positive integer. A partition $\lambda \vdash n$ is a non-increasing sequence of positive integers that sum to *n*.

Example

 $\lambda = (3,3,2,1,1,1) \vdash 11.$ There are 7 partitions of 5, namely

[[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]]

- The *Young Diagram* of a partition is a pile of boxes, the size of the parts.
- The conjugate of a partition is obtained by turning the diagram around.

• Bijection between partitions with at most k parts and partsizes $\leq k$

- At most 4 parts, or partsize \leq 4
- c_j counts nr such partitions of j
- $p_4(x) = \sum_{j \ge 0} c_j x^j$ generating function
- $p_4(x) = 1 + 1x + 2x^2 + 3x^3 + 5x^4 + 6x^5 + 9x^6 + O(x^7)$
- Easy to see that $p_4(x) = \frac{1}{(x^4-1)(x^3-1)(x^2-1)(x-1)}$
- Partial fractions: $p_4(x) = \frac{x+1}{9(x^2+x+1)} + \frac{1}{8(x^2+1)} + \frac{1}{8(x+1)} \frac{17}{72(x-1)} + \frac{1}{32(x+1)^2} + \frac{59}{288(x-1)^2} \frac{1}{8(x-1)^3} + \frac{1}{24(x-1)^4}$
- Gives asymptotic growth of j'th coefficient

Definition

p(n) is the number of partitions of n.

Lemma (Easy)

$$\sum_{n=0}^{\infty} p(n) x^n = \prod_{k=1}^{\infty} \frac{1}{1-x^k}$$

Theorem (Hardy-Ramanujan)

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi \sqrt{\frac{2n}{3}}\right)$$
 as $n \to \infty$.

G. H. Hardy

Theorem (Minkowski)

 $D \subset \mathbb{R}^n$ convex, volume > 2^n , -D = D. Then D contains lattice point (other than the origin).

Theorem

A area of triangle, i nr interior lattice points, b nr boundary lattice points. Then

$$A=i+\frac{b}{2}-1$$

$$i = 7, b = 8, A = i + b/2 - 1 = 10$$

We'll find the Pythagorean triples!

Theorem

The integer solutions to

$$a^2 + b^2 = c^2$$

correspond to rational point (a/c, b/c) on the unit circle; they can be parametrised by

$$a = 2mn$$
, $b = m^2 - n^2$, $c = m^2 + n^2$

Too hard...

Theorem

For $n \geq 3$, the equation

$$x^n + y^n = z^n$$

has no non-trivial integer solutions.

• The group \mathbb{Z}_n^* is cyclic when *n* a prime power

- $\mathbb{Z}_{nm} \simeq \mathbb{Z}_m \times \mathbb{Z}_n$ iff gcd(m, n) = 1, same for \mathbb{Z}_{mn}^* .
- $\mathbb{Z}[i] = \{ a + bi | a, b \in \mathbb{Z} \}$ is a principal ideal domain
- Hensel lifting
- Möbius inversion

- The group \mathbb{Z}_n^* is cyclic when n a prime power
- $\mathbb{Z}_{nm} \simeq \mathbb{Z}_m \times \mathbb{Z}_n$ iff gcd(m, n) = 1, same for \mathbb{Z}_{mn}^* .
- $\mathbb{Z}[i] = \{ a + bi | a, b \in \mathbb{Z} \}$ is a principal ideal domain
- Hensel lifting
- Möbius inversion

- The group \mathbb{Z}_n^* is cyclic when *n* a prime power
- $\mathbb{Z}_{nm} \simeq \mathbb{Z}_m \times \mathbb{Z}_n$ iff gcd(m, n) = 1, same for \mathbb{Z}_{mn}^* .
- $\mathbb{Z}[i] = \{ a + bi | a, b \in \mathbb{Z} \}$ is a principal ideal domain
- Hensel lifting
- Möbius inversion

- The group \mathbb{Z}_n^* is cyclic when n a prime power
- $\mathbb{Z}_{nm} \simeq \mathbb{Z}_m \times \mathbb{Z}_n$ iff gcd(m, n) = 1, same for \mathbb{Z}_{mn}^* .
- $\mathbb{Z}[i] = \{ a + bi | a, b \in \mathbb{Z} \}$ is a principal ideal domain
- Hensel lifting
- Möbius inversion

- The group \mathbb{Z}_n^* is cyclic when n a prime power
- $\mathbb{Z}_{nm} \simeq \mathbb{Z}_m \times \mathbb{Z}_n$ iff gcd(m, n) = 1, same for \mathbb{Z}_{mn}^* .
- $\mathbb{Z}[i] = \{ a + bi | a, b \in \mathbb{Z} \}$ is a principal ideal domain
- Hensel lifting
- Möbius inversion

Algebra-related things that we'll skip

• Permutations, cycle type, partitions

• Algebraic number fields, their rings of integers, class number

Algebra-related things that we'll skip

- Permutations, cycle type, partitions
- Algebraic number fields, their rings of integers, class number

- "Elementary" means no analysis, no advanced algebra, no convalouted combinatoric machinery
- Does not mean that it is easy
- Theory developed "from scratch"
- Need: set theory, induction
- Useful: linear algebra

- "Elementary" means no analysis, no advanced algebra, no convalouted combinatoric machinery
- Does not mean that it is easy
- Theory developed "from scratch"
- Need: set theory, induction
- Useful: linear algebra

- "Elementary" means no analysis, no advanced algebra, no convalouted combinatoric machinery
- Does not mean that it is easy
- Theory developed "from scratch"
- Need: set theory, induction
- Useful: linear algebra

- "Elementary" means no analysis, no advanced algebra, no convalouted combinatoric machinery
- Does not mean that it is easy
- Theory developed "from scratch"
- Need: set theory, induction
- Useful: linear algebra

- "Elementary" means no analysis, no advanced algebra, no convalouted combinatoric machinery
- Does not mean that it is easy
- Theory developed "from scratch"
- Need: set theory, induction
- Useful: linear algebra

• "Elementary Number Theory" by Rosen

- Chapt 1.5, 2.1, 3, 4.1-4, 5.1, 6, 7.1-4, 9, 11.1-4, 12, 13.1-4, 14.
- That's what the written exam will check
- I won't lecture on everything
- I'll also use "Elementary number Theory" by Stein (parts of)
- Hackman's manuscript good, as well
- Gaussian integers using Conrad's manuscript

- "Elementary Number Theory" by Rosen
- Chapt 1.5, 2.1, 3, 4.1-4, 5.1, 6, 7.1-4, 9, 11.1-4, 12, 13.1-4, 14.
- That's what the written exam will check
- I won't lecture on everything
- I'll also use "Elementary number Theory" by Stein (parts of)
- Hackman's manuscript good, as well
- Gaussian integers using Conrad's manuscript

- "Elementary Number Theory" by Rosen
- Chapt 1.5, 2.1, 3, 4.1-4, 5.1, 6, 7.1-4, 9, 11.1-4, 12, 13.1-4, 14.
- That's what the written exam will check
- I won't lecture on everything
- I'll also use "Elementary number Theory" by Stein (parts of)
- Hackman's manuscript good, as well
- Gaussian integers using Conrad's manuscript

- "Elementary Number Theory" by Rosen
- Chapt 1.5, 2.1, 3, 4.1-4, 5.1, 6, 7.1-4, 9, 11.1-4, 12, 13.1-4, 14.
- That's what the written exam will check
- I won't lecture on everything
- I'll also use "Elementary number Theory" by Stein (parts of)
- Hackman's manuscript good, as well
- Gaussian integers using Conrad's manuscript

- "Elementary Number Theory" by Rosen
- Chapt 1.5, 2.1, 3, 4.1-4, 5.1, 6, 7.1-4, 9, 11.1-4, 12, 13.1-4, 14.
- That's what the written exam will check
- I won't lecture on everything
- I'll also use "Elementary number Theory" by Stein (parts of)
- Hackman's manuscript good, as well
- Gaussian integers using Conrad's manuscript

- "Elementary Number Theory" by Rosen
- Chapt 1.5, 2.1, 3, 4.1-4, 5.1, 6, 7.1-4, 9, 11.1-4, 12, 13.1-4, 14.
- That's what the written exam will check
- I won't lecture on everything
- I'll also use "Elementary number Theory" by Stein (parts of)
- Hackman's manuscript good, as well
- Gaussian integers using Conrad's manuscript

- "Elementary Number Theory" by Rosen
- Chapt 1.5, 2.1, 3, 4.1-4, 5.1, 6, 7.1-4, 9, 11.1-4, 12, 13.1-4, 14.
- That's what the written exam will check
- I won't lecture on everything
- I'll also use "Elementary number Theory" by Stein (parts of)
- Hackman's manuscript good, as well
- Gaussian integers using Conrad's manuscript

19 sessions

- Maybe discuss the exercises sometimes
- You should do plenty of exercises!
- List of recommended exercises at course home page, http://courses.mai.liu.se/GU/TATA54/

19 sessions

• Maybe discuss the exercises sometimes

- You should do plenty of exercises!
- List of recommended exercises at course home page, http://courses.mai.liu.se/GU/TATA54/

- 19 sessions
- Maybe discuss the exercises sometimes
- You should do plenty of exercises!
- List of recommended exercises at course home page, http://courses.mai.liu.se/GU/TATA54/

- 19 sessions
- Maybe discuss the exercises sometimes
- You should do plenty of exercises!
- List of recommended exercises at course home page, http://courses.mai.liu.se/GU/TATA54/

Integers, divisibility

- Onique factorization
- I Greatest common divisor, Linear Diophantine equations
- Congruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- O Arithmetical functions, Mobius inversion
- Hensel lifting
- Iagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Ontinued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- I Greatest common divisor, Linear Diophantine equations
- Congruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- O Arithmetical functions, Mobius inversion
- Hensel lifting
- Iagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Ontinued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Congruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- 6 Arithmetical functions, Mobius inversion
- Hensel lifting
- Iagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Ontinued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- 6 Arithmetical functions, Mobius inversion
- Hensel lifting
- Iagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Ontinued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- 6 Arithmetical functions, Mobius inversion
- Hensel lifting
- Iagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Ontinued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- O Arithmetical functions, Mobius inversion
- Hensel lifting
- Iagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Ontinued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- Arithmetical functions, Mobius inversion
- Hensel lifting
- Lagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Ontinued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- Arithmetical functions, Mobius inversion
- Hensel lifting
- Lagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Ontinued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- Arithmetical functions, Mobius inversion
- Hensel lifting
- Lagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Continued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- Arithmetical functions, Mobius inversion
- Hensel lifting
- Lagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Continued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- Arithmetical functions, Mobius inversion
- Hensel lifting
- Lagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Continued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- O Arithmetical functions, Mobius inversion
- Hensel lifting
- Lagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Continued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)

- Integers, divisibility
- Onique factorization
- Greatest common divisor, Linear Diophantine equations
- Ongruences, Chinese remainder theorem
- Multiplicative order, Fermat, Euler
- Arithmetical functions, Mobius inversion
- Hensel lifting
- Lagrange, Primitive roots, Discrete logarithms (2 lectures)
- Quadratic Reciprocity (2 lectures)
- Continued fractions (2 lectures)
- Pell's equation
- Sum of squares
- Gaussian integers (2 lectures)