Number
Theory, Lecture 1

Jan Snellman

Divisibility
Definition Elementary properties
Partial order
Prime number
Division Algorithm
Greatest common divisor
Definition
Bezout
Euclidean algorithm
Extended Euclidean Algorithm

Unique factorization into primes Some Lemmas An importan property of primes Euclid, again Fundamental theorem of arithmetic multiple

Number Theory, Lecture 1

Integers, Divisibility, Primes

Jan Snellman ${ }^{1}$
${ }^{1}$ Matematiska Institutionen
Linköpings Universitet

TEKNISKA HÖGSKOLAN
LINKOPINGS UNIVERSITET

Number
Theory, Lecture 1

Jan Snellman

Divisibility

Definition Elementary properties
Partial order Prime number Division Algorithm

Greatest

 common divisor Definition Bezout Euclidean algorithm Extended Euclidean Algorithm
Unique

 factorization into primes Some Lemmas An importan property of primes Euclid, again Fundamental theorem of arithmetic multiple
(1) Divisibility

Definition
Elementary properties
Partial order
Prime number
Division Algorithm
(2) Greatest common divisor Definition
Bezout
Euclidean algorithm

Extended Euclidean Algorithm
(3) Unique factorization into primes

Some Lemmas
An importan property of primes Euclid, again
Fundamental theorem of arithmetic
Exponent vectors
Least common multiple
(4) More about primes

Sieve of Eratosthenes
Primes in arithmetic progressions

(1) Divisibility

Definition
Elementary properties
Partial order
Prime number
Division Algorithm
(2) Greatest common divisor

Definition
Bezout
Euclidean algorithm

Extended Euclidean Algorithm
(3) Unique factorization into primes

Some Lemmas
An importan property of primes Euclid, again
Fundamental theorem of arithmetic
Exponent vectors
Least common multiple
(4) More about primes

Sieve of Eratosthenes
Primes in arithmetic progressions

(1) Divisibility

Definition
Elementary properties
Partial order
Prime number
Division Algorithm
(2) Greatest common divisor

Definition
Bezout
Euclidean algorithm

Extended Euclidean Algorithm

(3) Unique factorization into primes

Some Lemmas

An importan property of primes Euclid, again
Fundamental theorem of arithmetic
Exponent vectors
Least common multiple
(4) More about primes

Sieve of Eratosthenes
Primes in arithmetic progressions

Divisibility

(1) Divisibility

Definition
Elementary properties
Partial order
Prime number
Division Algorithm
(2) Greatest common divisor

Definition
Bezout
Euclidean algorithm

Extended Euclidean Algorithm
(3) Unique factorization into primes

Some Lemmas
An importan property of primes
Euclid, again
Fundamental theorem of arithmetic
Exponent vectors
Least common multiple
(4) More about primes

Sieve of Eratosthenes
Primes in arithmetic progressions

Number
Theory, Lecture 1 Jan Snellman

Divisibility

 properties Partial order Prime number Division Algorithm
Definition

- $\mathbb{Z}=\{0,1,-1,2,-2,3,-3, \ldots\}$
- $\mathbb{N}=\{0,1,2,3, \ldots\}$
- $\mathbb{P}=\{1,2,3, \ldots\}$

Unless otherwise stated, $a, b, c, x, y, r, s \in \mathbb{Z}, n, m \in \mathbb{P}$.

Definition

$a \mid b$ if exists c s.t. $b=a c$.

Example

$3 \mid 12$ since $12=3 * 4$.

Number
Theory, Lecture 1 Jan Snellman

Divisibility

Definition Elementary properties
Partial order Prime number Division Algorithm

Greatest

common
divisor
Definition
Bezout
Euclidean algorithm Extended Euclidean Algorithm

Unique factorization into primes
Some Lemmas An importan property of primes Euclid, again Fundamental theorem of arithmetic

Lemma

- a 0 ,
- $0 \mid a \Longleftrightarrow a=0$,
- $1 \mid a$,
- $a \mid 1 \quad \Longleftrightarrow \quad a= \pm 1$,
- $a|b \wedge b| a \quad \Longleftrightarrow \quad a= \pm b$
- $a|b \Longleftrightarrow-a| b \Longleftrightarrow a \mid-b$
- $a|b \wedge a| c \quad \Longrightarrow \quad a \mid(b+c)$,
- $a|b \Longrightarrow a| b c$.

Theorem

Retricted to \mathbb{P}, divisibility is a partial order, with unique minimal element 1.

Part of Hasse diagram

Id est,
(1) $a \mid a$,
(2) $a|b \wedge b| c \quad \Longrightarrow \quad a \mid c$,
(3) $a|b \wedge b| a \quad \Longrightarrow \quad a=b$.

Number
Theory, Lecture 1 Jan Snellman

Divisibility

Definition Elementary properties Partial order Prime number Division Algorithm

Greatest common

Definition

$n \in \mathbb{P}$ is a prime number if

- $n>1$,
- $m \mid n \Longrightarrow m \in\{1, n\}$
(positive divisors, of course $-1,-n$ also divisors)

$$
2,3,5,7,11,13,17,19,23,29,31, \ldots
$$

Number
Theory, Lecture 1

Jan Snellman

Divisibility

Definition Elementary properties
Partial order
Prime number
Division Algorithm
Greatest

Division algorithm

Theorem

$a, b \in \mathbb{Z}, b \neq 0$. Then exists unique k, r, quotient and remainder, such that

- $a=k b+r$,
- $0 \leq r<b$.

Example

$-27=(-6) * 5+3$.

Suppose $a, b>0$. Fix b, induction over a, base case $a<b$, then

$$
a=0 * b+a .
$$

Otherwise

$$
a=(a-b)+b
$$

and ind. hyp. gives

$$
a-b=k^{\prime} b+r^{\prime}, \quad 0 \leq r^{\prime}<b
$$

so

$$
a=b+k^{\prime} b+r^{\prime}=\left(1+k^{\prime}\right) b+r^{\prime}
$$

Take $k=1+k^{\prime}, r=r^{\prime}$.

$$
a=k_{1} b+r_{1}=k_{2} b+r_{2}, \quad 0 \leq r_{1}, r_{2}<b
$$

then

$$
0=a-a=\left(k_{1}-k_{2}\right) b+r_{1}-r_{2}
$$

hence

$$
\left(k_{1}-k_{2}\right) b=r_{2}-r_{1}
$$

$|R H S|<b$, so $|L H S|<b$, hence $k_{1}=k_{2}$. But then $r_{1}=r_{2}$.

Number
Theory, Lecture 1 Jan Snellman

Divisibility

Definition Elementary properties
Partial order Prime number Division Algorithm

Greatest

common
divisor
Definition
Bezout
Euclidean algorithm Extended Euclidean Algorithm property of primes Euclid, again Fundamental theorem of arithmetic

Example

$$
a=23, b=5 .
$$

$$
\begin{aligned}
23 & =5+(23-5)=5+18 \\
& =5+5+(18-5)=2 * 5+13 \\
& =2 * 5+5+(13-5)=3 * 5+8 \\
& =3 * 5+5+(8-5)=4 * 5+3
\end{aligned}
$$

$k=4, r=3$.

Definition

$a, b \in \mathbb{Z}$. The greatest common divisor of a and $b, c=\operatorname{gcd}(a, b)$, is defined by
(1) $c|a \wedge c| b$,
(2) If $d|a \wedge d| b$, then $d \leq c$.

If we restrict to \mathbb{P}, the the last condition can be replaced with 2' If $d|a \wedge d| b$, then $d \mid c$.

Theorem (Bezout)

Let $d=\operatorname{gcd}(a, b)$. Then exists (not unique) $x, y \in \mathbb{Z}$ so that

$$
a x+b y=d
$$

Proof.

$S=\{a x+$ by $\mid x, y \in \mathbb{Z}\}, d=\min S \cap \mathbb{P}$. If $t \in S$, then $t=k d+r, 0 \leq r<d$. So $r=t-k d \in S \cap \mathbb{N}$. Minimiality of $d, r<d$ gives $r=0$. So $d \mid t$.
But $a, b \in S$, so $d|a, d| b$, and if ℓ another common divisor then $a=\ell u, b=\ell v$, and

$$
d=a x+b y=\ell u x+\ell v y=\ell(u x+v y)
$$

so $\ell \mid d$. Hence d is greatest common divisor.

Number
Theory, Lecture 1 Jan Snellman

Divisibility

Definition Elementary properties Partial order Prime number Division Algorithm

Greatest

 common divisor Deffinition Bezout Euclidean algorithm Extended Euclidean Algorithm
Unique

 factorization into primes Some Lemmas An importan property of primes Euclid, again Fundamental theorem of arithmetic multiple
Lemma

If $a=k b+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Proof.

If $c|a, c| b$ then $c \mid r$.
If $c|b, c| r$ then $c \mid a$.

Number
Theory, Lecture 1 Jan Snellman Divisibility Definition Elementary properties
Partial order Prime number Division Algorithm Algorithm

$$
\begin{aligned}
27 & =3 * 7+6 \\
7 & =1 * 6+1 \\
6 & =6 * 1+0
\end{aligned}
$$

Extended Euclidean algorithm, example

$$
\begin{aligned}
6 & =1 * 27-3 * 7 \\
1 & =7-1 * 6 \\
& =7-(27-3 * 7) \\
& =(-1) * 27+4 * 7
\end{aligned}
$$

Algorithm

(1) Initialize: Set $x=1, y=0, r=0, s=1$.
(2) Finished?: If $b=0$, set $d=a$ and terminate.
(3) Quotient and Remainder: Use Division algorithm to write $a=q b+c$ with $0 \leq c<b$.
(4) Shift: Set $(a, b, r, s, x, y)=(b, c, x-q r, y-q s, r, s)$ and go to Step 2 .

Number
Theory, Lecture 1 Jan Snellman

Divisibility

Definition Elementary properties Partial order Prime number Division Algorithm

Greatest common divisor Definition Bezout Euclidean algorithm Extended Euclidean Algorithm

Lemma

$\operatorname{gcd}(a n, b n)=|n| \operatorname{gcd}(a, b)$.

Proof

Assume $a, b, n \in \mathbb{P}$. Induct on $a+b$. Basis: $a=b=1, \operatorname{gcd}(a, b)=1$, $\operatorname{gcd}(a n, b n)=n$, OK. Ind. step: $a+b>2, a \geq b$.

$$
a=k b+r, \quad 0 \leq r<b
$$

If $k=0$, OK . Assume $k>0$.

Number
Theory, Lecture 1 Jan Snellman Divisibility Definition Elementary properties

Then

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =\operatorname{gcd}(b, r) \\
\operatorname{gcd}(a n, b n) & =\operatorname{gcd}(b n, r n)
\end{aligned}
$$

since

$$
a n=k b n+r n, \quad 0 \leq r n<b n .
$$

But

$$
b+r=b+(a-k b)=a-b(k-1) \leq a<a+b,
$$

so ind. hyp. gives

$$
n \operatorname{gcd}(b, r)=\operatorname{gcd}(b n, r n)
$$

But $L H S=n \operatorname{gcd}(a, b), R H S=\operatorname{gcd}(a n, b n)$.

Number Theory, Lecture 1 Jan Snellman

Divisibility

Definition Elementary properties Partial order Prime number Division Algorithm

Greatest

 common divisor Definition Bezout Euclidean algorithm Extended Euclidean Algorithm
Unique

 factorization into primes Some Lemmas An importan property of primes Euclid, again Fundamental theorem of arithmetic Exponent vectors Least common multiple
Lemma

If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$.

Proof.

$$
1=a x+b y,
$$

so

$$
c=a x c+b y c .
$$

Since $a \mid R H S$, $a \mid c$.

Number
Theory, Lecture 1

Jan Snellman

Divisibility

Definition Elementary properties Partial order Prime number Division Algorithm Greatest common đivisor Algorithm

Unique

 factorization into primes
Some Lemmas

An importan property of primes Euclid, again Fundamental theorem of arithmetic multiple

Lemma

p prime, $p \mid a b$. Then $p \mid a$ or $p \mid b$.

Proof.

If $p \nmid a$ then $\operatorname{gcd}(p, a)=1$. Thus $p \mid b$ by previous lemma.

Theorem (Euclides)

Ever n is a product of primes. There are infinitely many primes.

Proof.

1 is regarded as the empty product. Ind on n. If n prime, OK. Otherwise, $n=a b$, $a, b<n$. So a, b product of primes. Combine.
Suppose $p_{1}, p_{2}, \ldots, p_{s}$ are known primes. Put

$$
N=p_{1} p_{2} \cdots p_{s}+1
$$

then $N=k p_{i}+1$ for all known primes, so no known prime divide N. But N is a product of primes, so either prime, or product of unknown primes.

Number
Theory, Lecture 1

Divisibility

Definition
Elementary properties
Partial order Prime number Division Algorithm

Greatest common divisor Definition Bezout Euclidean algorithm Extended Euclidean Algorithm

Unique

 factorization into primesSome Lemmas An importan property of primes Euclid, again Fundamental theorem of arithmetic

Example

$$
\begin{aligned}
2 * 3 * 5+1 & =31 \\
2 * 3 * 5 * 7+1 & =211 \\
2 * 3 * 5 * 7 * 11 * 13+1 & =59 * 509
\end{aligned}
$$

Number
Theory, Lecture 1

Divisibility
Definition
Elementary properties
Partial order Prime number Division Algorithm

Greatest

 common divisorDefinition
Bezout
Euclidean algorithm Extended Euclidean Algorithm

Unique

 factorization into primes Some Lemmas An importan property of primes Euclid, again Fundamental theorem of arithmetic
Example

$$
\begin{gathered}
2 * 3 * 5+1=31 \\
2 * 3 * 5 * 7+1=211
\end{gathered}
$$

$$
2 * 3 * 5 * 7 * 11 * 13+1=59 * 509
$$

Number
Theory, Lecture 1 Jan Snellman

Divisibility

Definition Elementary properties Partial order Prime number Division Algorithm

Greatest

 common divisor Definition Bezout Euclidean algorithm Extended Euclidean Algorithm
Unique

 factorization into primes Some Lemmas An importan property of primes Euclid, again Fundamental Fundamental theorem of arithmeticExponent vectors Least common multiple

Example

$$
\begin{aligned}
2 * 3 * 5+1 & =31 \\
2 * 3 * 5 * 7+1 & =211 \\
2 * 3 * 5 * 7 * 11 * 13+1 & =59 * 509
\end{aligned}
$$

Theorem

For any $n \in \mathbb{P}$, can uniquely (up to reordering) write

$$
n=p_{1} p_{2} \cdots p_{s}, \quad p_{i} \text { prime } .
$$

Proof.

Existence, Euclides. Uniqueness: suppose

$$
n=p_{1} p_{2} \cdots p_{s}=q_{1} q_{2} \cdot q_{r} .
$$

Since $p_{1} \mid n$, we have $p_{1} \mid q_{1} q_{2} \cdots q_{r}$, which by lemma yields $p_{1} \mid q_{j}$ some q_{j}, hence $p_{1}=q_{j}$. Cancel and continue.
pland

Jan Snellman

Divisibility

- Number the primes in increasing order, $p_{1}=2, p_{2}=3, p_{3}=5$, et cetera.
- Then $n=\prod_{j=1}^{\infty} p_{j}^{a_{j}}$, all but finitely many a_{j} zero.
- Let $v(n)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ be this integer sequence.
- Then $v(n m)=v(n)+v(m)$.
- Order componentwise, then $n \mid m \Longleftrightarrow v(n) \leq v(m)$.
- Have $v(\operatorname{gcd}(n, m))=\min (v(n), v(m))$.

Example

Number
Theory, Lecture 1 Jan Snellman

Divisibility
Definition
Elementary properties
Partial order
Prime number Division Algorithm

Greatest

common

Definition

- $a, b \in \mathbb{Z}$
- $m=\operatorname{lcm}(a, b)$ least common multiple if
(1) $m=a x=$ by (common multiple)
(2) If n common multiple of a, b then $m \mid n$

Lemma (Easy)

- $a, b \in \mathbb{P}, c, d \in \mathbb{Z}$
- $\operatorname{lcm}\left(\prod_{j} p_{j}^{a_{j}}, \prod_{j} p_{j}^{b_{j}}\right)=\prod_{j} p_{j}^{\max \left(a_{j}, b_{j}\right)}$
- $a b=\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)$
- If $a \mid c$ and $b \mid c$ then $\operatorname{lcm}(a, b) \mid c$
- If $c \equiv d \bmod a$ and $c \equiv d \bmod b$ then $c \equiv d \bmod \operatorname{lcm}(a, b)$

Algorithm

(1) Given N, find all primes $\leq N$
(5) $P=P \cup\left\{p_{i}\right\}$
(2) $X=[2, N], i=1, P=\emptyset$
(3) $p_{i}=\min (X)$.
(4) Remove multiples of p_{i} from X
(6) If $p_{i} \geq \sqrt{N}$, then terminate, otherwise $i=i+1$, goto 3 .

1	2	3	4	5	6	7	8	8	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	35	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
81	52	53	54	55	56	51	88	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	71	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Number
Theory, Lecture 1

Jan Snellman

Divisibility

Definition Elementary properties

- Any number have remainder $0,1,2$, or 3 , when divided by 4
- Except for 2, all primes are odd
- Thus, primes >2 are either of the form $4 n+1$ or $4 n+3$
- $4 n+3=4(n+1)-1=4 m-1$.

Theorem

There are infinitely many primes of the form $4 m-1$.

Proof.

Let q_{1}, \ldots, q_{r} be the known such primes, put

$$
N=4 q_{1} q_{2} \cdots q_{r}-1
$$

Then N odd, not divisible by any q_{j}. Factor N into primes:

$$
N=u_{1} u_{2} \cdots u_{s}
$$

If all $u_{i}=4 m_{i}+1$ then

$$
N=\left(4 m_{1}+1\right)\left(4 m_{2}+1\right) \cdots\left(4 m_{s}+1\right)=4 m+1
$$

a contradiction. So some $u_{j}=4 m_{j}-1, u_{j} \mid N$ so $u_{j} \notin\left\{q_{1}, \ldots, q_{r}\right\}$, hence new.

Number
Theory, Lecture 1 Jan Snellman

Divisibility

Definition Elementary properties Partial order Prime number Division Algorithm

Greatest common divisor Definition
Bezout
Euclidean algorithm Extended Euclidean Algorithm property of primes multiple

Theorem (Dirichlet)

$a, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1$. Then $a \mathbb{Z}+b$ contains infinitely many primes.

Example

Obviously $6 \mathbb{Z}+3$ contains only one prime, 3 , so condition necessary.

Jan Snellman

Divisibility
Definition
Elementary properties

Partial order Prime number Division Algorithm

Greatest common
divisor Definition Bezout
Euclidean algorithm Extended Euclidean Algorithm property of primes Euclid, again Fundamental theorem of arithmetic Exponent vectors Least common multiple

