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Integers, divisibility

Definition

• Z = {0, 1,−1, 2,−2, 3,−3, . . .}

• N = {0, 1, 2, 3, . . .}

• P = {1, 2, 3, . . .}

Unless otherwise stated, a, b, c , x , y , r , s ∈ Z, n,m ∈ P.

Definition

a|b if exists c s.t. b = ac.

Example

3|12 since 12 = 3 ∗ 4.
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Lemma

• a|0,

• 0|a ⇐⇒ a = 0,

• 1|a,

• a|1 ⇐⇒ a = ±1,

• a|b ∧ b|a ⇐⇒ a = ±b

• a|b ⇐⇒ −a|b ⇐⇒ a|−b

• a|b ∧ a|c =⇒ a|(b + c),

• a|b =⇒ a|bc.
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Theorem

Retricted to P, divisibility is a partial order, with unique minimal element 1.

Part of Hasse diagram

1

2 3

4

5

6

7

9 10 1415 21 35

Id est,

1 a|a,

2 a|b ∧ b|c =⇒ a|c ,

3 a|b ∧ b|a =⇒ a = b.
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Definition

n ∈ P is a prime number if

• n > 1,

• m|n =⇒ m ∈ {1, n}

(positive divisors, of course −1,−n also divisors)

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
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Division algorithm

Theorem

a, b ∈ Z, b 6= 0. Then exists unique k , r , quotient and remainder, such that

• a = kb + r ,

• 0 ≤ r < b.

Example

−27 = (−6) ∗ 5 + 3.
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Proof, existence

Suppose a, b > 0. Fix b, induction over a, base case a < b, then

a = 0 ∗ b + a.

Otherwise

a = (a − b) + b

and ind. hyp. gives

a − b = k ′b + r ′, 0 ≤ r ′ < b

so

a = b + k ′b + r ′ = (1 + k ′)b + r ′.

Take k = 1 + k ′, r = r ′.
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Proof, uniqueness

If

a = k1b + r1 = k2b + r2, 0 ≤ r1, r2 < b

then

0 = a − a = (k1 − k2)b + r1 − r2

hence

(k1 − k2)b = r2 − r1

|RHS | < b, so |LHS | < b, hence k1 = k2. But then r1 = r2.
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Example

a = 23,b = 5.

23 = 5 + (23 − 5) = 5 + 18

= 5 + 5 + (18 − 5) = 2 ∗ 5 + 13

= 2 ∗ 5 + 5 + (13 − 5) = 3 ∗ 5 + 8

= 3 ∗ 5 + 5 + (8 − 5) = 4 ∗ 5 + 3

k = 4, r = 3.
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Greatest common divisor

Definition

a, b ∈ Z. The greatest common divisor of a and b, c = gcd(a, b), is defined by

1 c |a ∧ c|b,

2 If d |a ∧ d |b, then d ≤ c .

If we restrict to P, the the last condition can be replaced with

2’ If d |a ∧ d |b, then d |c .
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Bezout’s theorem

Theorem (Bezout)

Let d = gcd(a, b). Then exists (not unique) x , y ∈ Z so that

ax + by = d .

Proof.

S = { ax + by x , y ∈ Z }, d = min S ∩ P. If t ∈ S , then t = kd + r , 0 ≤ r < d . So

r = t − kd ∈ S ∩ N. Minimiality of d , r < d gives r = 0. So d |t.

But a, b ∈ S , so d |a, d |b, and if ` another common divisor then a = `u, b = `v , and

d = ax + by = `ux + `vy = `(ux + vy)

so `|d . Hence d is greatest common divisor.
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Étienne Bézout
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Lemma

If a = kb + r then gcd(a, b) = gcd(b, r).

Proof.

If c |a, c |b then c|r .

If c |b, c |r then c|a.
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Extended Euclidean algorithm, example

27 = 3 ∗ 7 + 6

7 = 1 ∗ 6 + 1

6 = 6 ∗ 1 + 0

6 = 1 ∗ 27 − 3 ∗ 7

1 = 7 − 1 ∗ 6

= 7 − (27 − 3 ∗ 7)

= (−1) ∗ 27 + 4 ∗ 7
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Xgcd

Algorithm

1 Initialize: Set x = 1, y = 0, r = 0, s = 1.

2 Finished?: If b = 0, set d = a and terminate.

3 Quotient and Remainder: Use Division algorithm to write a = qb + c with

0 ≤ c < b.

4 Shift: Set (a, b, r , s, x , y) = (b, c , x − qr , y − qs, r , s) and go to Step 2.
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Lemma

gcd(an, bn) = |n| gcd(a, b).

Proof

Assume a, b, n ∈ P. Induct on a + b. Basis: a = b = 1, gcd(a, b) = 1,

gcd(an, bn) = n, OK.

Ind. step: a + b > 2, a ≥ b.

a = kb + r , 0 ≤ r < b

If k = 0, OK. Assume k > 0.
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Then

gcd(a, b) = gcd(b, r)

gcd(an, bn) = gcd(bn, rn)

since

an = kbn + rn, 0 ≤ rn < bn.

But

b + r = b + (a − kb) = a − b(k − 1) ≤ a < a + b,

so ind. hyp. gives

n gcd(b, r) = gcd(bn, rn).

But LHS = n gcd(a, b), RHS = gcd(an, bn).
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Lemma

If a|bc and gcd(a, b) = 1 then a|c.

Proof.

1 = ax + by ,

so

c = axc + byc .

Since a|RHS , a|c .
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Lemma

p prime, p|ab. Then p|a or p|b.

Proof.

If p 6 |a then gcd(p, a) = 1. Thus p|b by previous lemma.
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Infinitude of primes

Theorem (Euclides)

Ever n is a product of primes. There are infinitely many primes.

Proof.

1 is regarded as the empty product. Ind on n. If n prime, OK. Otherwise, n = ab,

a, b < n. So a, b product of primes. Combine.

Suppose p1, p2, . . . , ps are known primes. Put

N = p1p2 · · · ps + 1,

then N = kpi + 1 for all known primes, so no known prime divide N. But N is a

product of primes, so either prime, or product of unknown primes.
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Example

2 ∗ 3 ∗ 5 + 1 = 31

2 ∗ 3 ∗ 5 ∗ 7 + 1 = 211

2 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ 13 + 1 = 59 ∗ 509
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Fundamental theorem of arithmetic

Theorem

For any n ∈ P, can uniquely (up to reordering) write

n = p1p2 · · · ps , pi prime .

Proof.

Existence, Euclides. Uniqueness: suppose

n = p1p2 · · · ps = q1q2 · qr .

Since p1|n, we have p1|q1q2 · · · qr , which by lemma yields p1|qj some qj , hence

p1 = qj . Cancel and continue.
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Exponent vectors

• Number the primes in increasing order, p1 = 2,p2 = 3,p3 = 5, et cetera.
• Then n =

∏∞
j=1 p

aj
j , all but finitely many aj zero.

• Let v(n) = (a1, a2, a3, . . . ) be this integer sequence.
• Then v(nm) = v(n) + v(m).
• Order componentwise, then n|m ⇐⇒ v(n) ≤ v(m).
• Have v(gcd(n,m)) = min(v(n), v(m)).

Example

gcd(100, 130) = gcd(22 ∗ 52, 2 ∗ 5 ∗ 13)

= 2min(2,1) ∗ 5min(2,1) ∗ 13min(0,1)

= 21 ∗ 51 ∗ 130

= 10
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Definition

• a, b ∈ Z
• m = lcm(a, b) least common multiple if

1 m = ax = by (common multiple)

2 If n common multiple of a, b then m|n

Lemma (Easy)

• a, b ∈ P, c , d ∈ Z
• lcm(

∏
j p

aj
j ,

∏
j p

bj
j ) =

∏
j p

max(aj ,bj )
j

• ab = gcd(a, b)lcm(a, b)

• If a|c and b|c then lcm(a, b)|c
• If c ≡ d mod a and c ≡ d mod b then c ≡ d mod lcm(a, b)
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Sieve of Eratosthenes

Algorithm

1 Given N, find all primes ≤ N

2 X = [2,N], i = 1, P = ∅
3 pi = min(X ).

4 Remove multiples of pi from X

5 P = P ∪ {pi }

6 If pi ≥
√

N, then terminate,

otherwise i = i + 1, goto 3.
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• Any number have remainder 0,1,2, or 3, when divided by 4

• Except for 2, all primes are odd

• Thus, primes > 2 are either of the form 4n + 1 or 4n + 3

• 4n + 3 = 4(n + 1) − 1 = 4m − 1.

Theorem

There are infinitely many primes of the form 4m − 1.
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Proof

Proof.

Let q1, . . . , qr be the known such primes, put

N = 4q1q2 · · · qr − 1

Then N odd, not divisible by any qj . Factor N into primes:

N = u1u2 · · · us

If all ui = 4mi + 1 then

N = (4m1 + 1)(4m2 + 1) · · · (4ms + 1) = 4m + 1,

a contradiction. So some uj = 4mj − 1, uj |N so uj 6∈ {q1, . . . , qr }, hence new.
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Theorem (Dirichlet)

a, b ∈ Z, gcd(a, b) = 1. Then aZ+ b contains infinitely many primes.

Example

Obviously 6Z+ 3 contains only one prime, 3, so condition necessary.
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