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Definition

• Pell’s equation is the Diophantine equation in x , y

x2 − dy2 = 1

with d an integer

• Negative Pell is

x2 − dy2 = −1

• We also study the Pell-like equations

x2 − dy2 = n

where n is an integer
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Trivial cases

Study

x2 − dy2 = n

• If d , n < 0 then no solution

• Id d < 0, n > 0 then a solution satisfies |x | ≤
√
n, |y | ≤

√
n/|d |, so

finitely many solns

• if d = D2 then

n = x2 − dy2 = x2 − D2y2 = (x + Dy)(x − Dy)

so soln correspond to soln to eqn sys

x + Dy = a

x − Dy = b

ab = n

and again ,finitely many solns
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Theorem

Suppose 0 < d , |n| <
√
d , d not a square. If (x , y) ∈ Z2 satisfies

x2 − dy2 = n, then x/y is a convergent of the CF of
√
d .

Proof.

Assume n > 0, then

(x + y
√
d)(x − y

√
d) = n,

so x − y
√
d > 0, so x > y

√
d , so x

y −
√
d > 0. Then

x

y
−
√
d =

x −
√
dy

y
=

x2 − dy2

y(x + y
√
d)
<

|n|

y(2y
√
d)
<

√
d

2y2
√
d
=

1

2y2

Such good approximation must come frome a convergent.
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CF of
√
d

Theorem

d positive integer, not square. Then the CF of
√
d = [a0, a1, a2, . . . ], and

the corresponding convergents pk/qk , can be computed as follows:

1 α0 =
√
d , a0 = bα0c, P0 = 0, Q0 = 1, p0 = a0,q0 = 1

2 αk = Pk+
√
d

Qk
, ak = bαkc

3 Pk+1 = akQk − Pk , Qk+1 = (d − P2
k+1)/Qk

4

Pk+1pk − nqk = −Qk+1pk−1

pk − Pk+1qk = Qk+1qk−1

For all k,

p2k − dq2k = (−1)k+1Qk+1
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Theorem

d positive integer, not a square. Let
√
d = [a0, a1, . . . ], and let n be the

period length of this periodic CF expansion. Let pk/qk be the k ’th

convergent.

• If n even, negative Pell has no solns, and Pell x2 − dy2 = 1 has

precisely the solns x = pjn−1, y = qjn−1, j = 1, 2, 3 . . .

• If n odd, negative Pell has precisely the solns x = p(2j−1)n−1,

y = q(2j−1)n−1, j = 1, 2, 3, . . ., and Pell has precisely the solns

x = p2jn−1, y = q2jn−1, j = 1, 2, 3, . . ..

Proof.

See Rosen.
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Example
√

17 = [4, 8], so the period length is 1. The odd numbered convergents are

33/8, 2177/528, 143649/34840, 9478657/2298912, . . .

and indeed 332 − 17 ∗ 82 = 1. The even numbered convergents are

268/65, 17684/4289, 1166876/283009, 76996132/18674305, . . .

and indeed 2682 − 17 ∗ 652 = −1.
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Lemma

(x21 − dy21 )(x
2
2 − dy22 ) = (x1x2 + dy1y2)

2 − d(x1y2 + x2y1)
2

so if (x1, x2), (x2, y2) are solns to (standard) Pell, then so is

(x1x2 + dy1y2, x1y2 + x2y1).

In particular, (x21 + dy21 , 2x1y1), is a solution.

Proof.

Obvious.

Note that

(x +
√
dy)2 = x2 + dy2 +

√
d2xy .
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Theorem

1 If (x1, y1) is a soln to x2 − dy2 = 1, then writing

(x1 + y1
√
d)k = xk +

√
dyk ,

it holds that (xk , yk) is also a soln to (standard) Pell.

2 All solns to standard Pell are obtainable from the smallest soln

(x1, y1), by the above procedure.

Proof.

1 Easy.

2 Hard, see Rosen.
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Example

We return to

x2 − 17y2 = 1,

with smallest soln (x1, y1) = (33, 8) We calculate that

(33 + 8
√

17)2 = 332 + 17 ∗ 82 + 16 ∗ 33 ∗
√

17 = 2177 + 528
√

17,

so (2177, 528) is the next soln.
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Double equations

Example

Eliminating t from the pair of equations

x2 − 21t − 11 = 0

y2 − 7t − 9 = 0

gives the Pell-type eqn x2 − 3y2 + 16 = 0.

x2 − 21 ∗ t − 7 = 0

y2 − 7 ∗ t − 2 = 0

gives x2 − 3 ∗ y2 = 1.
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Approximating square roots

Example

Since (x , y) = (2177, 528) is a soln to x2 − 17y2 = 1, we have that

4.1231 ≈
√

17 =

√
x2 − 1

y2
=

√
x2 − 1

y
≈ x

y
=

2177

528
≈ 4.1231
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Sums of consecutive integers

Problem

When is
∑n

k=1 k =
∑m

k=n+1 k ?

LHS − RHS =
n(n + 1)

2
−

n + 1 +m

2
(m − n)

=
1

2

(
n2 + n − nm + n2 −m + n −m2 +mn

)
=

1

2

(
2n2 + 2n −m2 −m

)
=

1

4
(4n2 + 4n − 2m2 − 2m)

=
1

4
(2((2n + 1)2 − 1) − ((2m + 1)2 − 1)

=
1

4
((2m − 1)2 − 2(2n + 1)2 + 1)

=
1

4
(s2 − 2t2 + 1)
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