Number Theory, Lecture 10

Jan Snellman

Pell's equation

Applications

Number Theory, Lecture 10 Pell's equation

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Summary

Pell's equation Applications

1 Pell's equation
Variations
Trivial cases

Relation to CF
New solutions from old

2 Applications

Number Theory, Lecture 10

Jan Snellman

Pell's equation

Variations

Trivial cases
Relation to CF
New solutions from old

Applications

Definition

• Pell's equation is the Diophantine equation in x, y

$$x^2 - dy^2 = 1$$

with d an integer

• Negative Pell is

$$x^2 - dy^2 = -1$$

• We also study the Pell-like equations

$$x^2 - dy^2 = n$$

where n is an integer

Valiations	
Trivial cases	
Relation to CF	
New solutions from old	• If $d, n < 0$ then no solution
Applications	• Id $d < 0$, $n > 0$ then a solut
	finitely many solns
	• if $d=D^2$ then

Study

Number Theory. Lecture 10

Jan Snellman

Pell's equation

Variations

so soln correspond to soln to eqn sys x + Dy = ax - Dy = b

$$ab = n$$

and again ,finitely many solns

 $n = x^2 - dv^2 = x^2 - D^2v^2 = (x + Dv)(x - Dv)$

solution satisfies $|x| \leq \sqrt{n}$, $|y| \leq \sqrt{n/|d|}$, so

$$x - ay = n$$

 $x^2 - dv^2 = n$

Trivial cases

Jan Snellman

Pell's equation

Variations

Trivial cases

Relation to CF
New solutions from old

Applications

Theorem

Suppose 0 < d, $|n| < \sqrt{d}$, d not a square. If $(x, y) \in \mathbb{Z}^2$ satisfies $x^2 - dy^2 = n$, then x/y is a convergent of the CF of \sqrt{d} .

Proof.

Assume n > 0, then

$$(x+y\sqrt{d})(x-y\sqrt{d})=n,$$

so $x - y\sqrt{d} > 0$, so $x > y\sqrt{d}$, so $\frac{x}{y} - \sqrt{d} > 0$. Then

$$\frac{x}{y} - \sqrt{d} = \frac{x - \sqrt{d}y}{y} = \frac{x^2 - dy^2}{y(x + y\sqrt{d})} < \frac{|n|}{y(2y\sqrt{d})} < \frac{\sqrt{d}}{2y^2\sqrt{d}} = \frac{1}{2y^2}$$

Such good approximation must come frome a convergent.

Pell's equation

Variations
Trivial cases

Relation to CF

New solutions from old

Applications

Theorem

d positive integer, not square. Then the CF of $\sqrt{d} = [a_0, a_1, a_2, \ldots]$, and the corresponding convergents p_k/q_k , can be computed as follows:

- **1** $\alpha_0 = \sqrt{d}$, $a_0 = \lfloor \alpha_0 \rfloor$, $P_0 = 0$, $Q_0 = 1$, $p_0 = a_0, q_0 = 1$

- 4

$$P_{k+1}p_k - nq_k = -Q_{k+1}p_{k-1}$$

 $p_k - P_{k+1}q_k = Q_{k+1}q_{k-1}$

For all k,

$$p_k^2 - dq_k^2 = (-1)^{k+1} Q_{k+1}$$

Jan Snellman

Pell's equation

Variations

Trivial cases

Relation to CF
New solutions from old

Applications

Theorem

d positive integer, not a square. Let $\sqrt{d} = [a_0, a_1, \ldots]$, and let n be the period length of this periodic CF expansion. Let p_k/q_k be the k'th convergent.

- If n even, negative Pell has no solns, and Pell $x^2 dy^2 = 1$ has precisely the solns $x = p_{jn-1}$, $y = q_{jn-1}$, $j = 1, 2, 3 \dots$
- If n odd, negative Pell has precisely the solns $x=p_{(2j-1)n-1}$, $y=q_{(2j-1)n-1}$, $j=1,2,3,\ldots$, and Pell has precisely the solns $x=p_{2jn-1}$, $y=q_{2jn-1}$, $j=1,2,3,\ldots$

Proof.

See Rosen.

Number Theory, Lecture 10

Jan Snellman

Pell's equation

Trivial cases

New solutions from old

Applications

Example

 $\sqrt{17}=[4,\overline{8}],$ so the period length is 1. The odd numbered convergents are

33/8, 2177/528, 143649/34840, 9478657/2298912, . . .

and indeed $33^2-17*8^2=1$. The even numbered convergents are

268/65, 17684/4289, 1166876/283009, 76996132/18674305, . . .

and indeed $268^2 - 17 * 65^2 = -1$.

Number Theory, Lecture 10

Jan Snellman

Pell's equation

Variations
Trivial cases

Relation to CF

New solutions from old

Applications

Lemma

$$(x_1^2 - dy_1^2)(x_2^2 - dy_2^2) = (x_1x_2 + dy_1y_2)^2 - d(x_1y_2 + x_2y_1)^2$$

so if (x_1, x_2) , (x_2, y_2) are solns to (standard) Pell, then so is $(x_1x_2 + dy_1y_2, x_1y_2 + x_2y_1)$.

In particular, $(x_1^2 + dy_1^2, 2x_1y_1)$, is a solution.

Proof.

Obvious.

Note that

$$(x + \sqrt{d}y)^2 = x^2 + dy^2 + \sqrt{d}2xy.$$

Jan Snellman

Pell's equation

Variations
Trivial cases

Relation to CF

New solutions from old

Applications

Theorem

1 If (x_1, y_1) is a soln to $x^2 - dy^2 = 1$, then writing

$$(x_1 + y_1\sqrt{d})^k = x_k + \sqrt{d}y_k,$$

it holds that (x_k, y_k) is also a soln to (standard) Pell.

2 All solns to standard Pell are obtainable from the smallest soln (x_1, y_1) , by the above procedure.

Proof.

- 1 Easy.
- 2 Hard, see Rosen.

Number Theory, Lecture 10 Jan Snellman

.. .

Pell's equation

Trivial cases
Relation to CF

New solutions from old

Applications

Example

We return to

$$x^2 - 17y^2 = 1$$

with smallest soln $(x_1, y_1) = (33, 8)$ We calculate that

$$(33 + 8\sqrt{17})^2 = 33^2 + 17 * 8^2 + 16 * 33 * \sqrt{17} = 2177 + 528\sqrt{17},$$

so (2177, 528) is the next soln.

Pell's equation

Applications

Example

Eliminating t from the pair of equations

$$x^2 - 21t - 11 = 0$$
$$y^2 - 7t - 9 = 0$$

gives the Pell-type eqn $x^2 - 3y^2 + 16 = 0$.

$$x^{2} - 21 * t - 7 = 0$$
$$y^{2} - 7 * t - 2 = 0$$

gives $x^2 - 3 * y^2 = 1$.

Approximating square roots

Pell's equation

Applications

Example

Since (x, y) = (2177, 528) is a soln to $x^2 - 17y^2 = 1$, we have that

$$4.1231 \approx \sqrt{17} = \sqrt{\frac{x^2 - 1}{y^2}} = \frac{\sqrt{x^2 - 1}}{y} \approx \frac{x}{y} = \frac{2177}{528} \approx 4.1231$$

 $= \frac{1}{4}(s^2 - 2t^2 + 1)$

 $=\frac{1}{4}((2m-1)^2-2(2n+1)^2+1)$