Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples
- Congruences

Number Theory, Lecture 11

The Gaussian integers

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples
- Congruences

1 Definition

Norm

Units, irreducibles, primes

2 Division algorithm

Division algorithm in Z Rationalizing denominators Greatest common divisor Euclidean Algorithm

- **3** Unique factorization
 - Irreducibles are primes
- **4** Gaussian primes
- **5** Sums of two squares
- **6** Pythagorean triples
- Congruences

Representatives, transversals Fermat and euler

Summary

Jan Snellman

Definition

Norm

Units, irreducibles, primes

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Definition

- $z = a + ib \in \mathbb{C}$
- conjugate $\overline{z} = a ib$
- norm $N(z) = z\overline{z} = a^2 + b^2$

Lemma

N(zw) = N(z)N(w)

Proof. $\overline{zw} = \overline{zw}$

Jan Snellman

Definition

Norm

Units, irreducibles, primes

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Definition

 $\mathbb{Z}[i] = \{ a + ib | a, b \in \mathbb{Z} \}$

Lemma

- $\mathbb{Z}[i]$ subring of \mathbb{C}
- Not a subfield $(1/2 \notin \mathbb{Z}[i])$
- Integral domain (no zero-divisors)
- Principal ideal domain
- Euclidean domain

Jan Snellman

Definition

Norm

Units,irreducibles, primes

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Lemma

If $N(\alpha) = n$ then $v_p(n)$ is even for all $p \equiv 3 \mod 4$. If n is a positive integer such that $v_p(n)$ is even for all $p \equiv 3 \mod 4$, then n is the norm of some $\alpha \in \mathbb{Z}[i]$.

Proof.

If $\alpha = a + ib$ then $n = N(\alpha) = a^2 + b^2$ is a sum of two squares. Thus, every prime congruent to 3 mod 4 occurse with even multiplicity; the converse also holds.

Jan Snellman

Definition

Norm Units,irreducibles, primes

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Jan Snellman

Definition

Norm

Units,irreducibles, primes

- **Division algorithm**
- Unique factorization
- **Gaussian primes**

Sums of two squares

Pythagorean triples

Congruences

Definition

 $\alpha, \beta \in \mathbb{Z}[i]$

- $\alpha|\beta$ iff exists $\gamma \in \mathbb{Z}[i]$ s.t. $\beta = \gamma \alpha$
- α is a unit if $\alpha|1$
- α, β are associate if $\alpha | \beta$ and $\beta | \alpha$
- α is irreducible if any divisor is a unit or associate to α
- α is a (Gaussian) prime if $\alpha | \beta_1 \beta_2$ implies that $\alpha | \beta_1$ or $\alpha | \beta_2$ (or both)

Jan Snellman

Definition

Norm

Units,irreducibles, primes

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Definition

 $\mathbb{Q}[i] = \{ a + bi | a, b \in \mathbb{Q} \}$

Lemma

- ℤ[i] subring of ℚ[i], which is a subfield of ℂ, and a quadratic field extension of ℚ
- Q[i] is the field of fractions of Z[i in the same way that Q is for Z, namely, it is the smallest field containing Z[i]
- So, if $\alpha, \beta \in \mathbb{Z}[i]$, with $\beta \neq 0$, then it is always true that $\frac{\alpha}{\beta} \in \mathbb{Q}[i]$, but $\frac{\alpha}{\beta} \in \mathbb{Z}[i]$ if and only if $\beta \mid \alpha$

Jan Snellman

Definition

Norm Units,irreducibles, primes

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Example

$$\frac{2+3i}{1-i} = \frac{(2+3i)(1+i)}{(1+i)(1-i)} = \frac{-1+5i}{2} = \frac{-1}{2} + \frac{5}{2}i \in \mathbb{Q}[i] \setminus \mathbb{Z}[i],$$

So
$$1 - i \frac{1}{2} + 3i$$
.
On the other hand,

$$\frac{3-i}{1-i} = \frac{(3-i)(1+i)}{(1+i)(1-i)} = \frac{4+2i}{2} = 2+i \in \mathbb{Z}[i],$$

so 1 - i|3 - i.

Jan Snellman

Definition

Norm Units,irreducibles, primes

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Lemma

 $\alpha|\beta$ implies that $N(\alpha)|N(\beta)$

Proof.

Follows from multiplicativity of the norm.

Jan Snellman

Definition

Norm Units,irreducibles, primes

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Corollary

- $N(\alpha) = 1$ iff α is a unit iff $\alpha \in \{\pm 1, \pm i\}$
- if $N(\alpha)$ is a (rational) prime, then α is irreducible.

Proof.

- $1 = N(1) = N(\alpha \frac{1}{\alpha}) = N(\alpha)N(\frac{1}{\alpha})$, so since $N(\alpha)$ and $N(\frac{1}{\alpha})$ are positive integers, they are both 1.
- If $\alpha = \beta \gamma$ with $N(\beta)$, $N(\gamma) > 1$, then $N(\alpha) = N(\beta)N(\gamma)$, a contradiction.

Jan Snellman

Definition

Norm Units,irreducibles, primes

Division algorithm

Unique factorization

```
Gaussian primes
```

Sums of two squares

Pythagorean triples

Congruences

Lemma

```
u, v \in \mathbb{Z}[i] are associate iff u = \alpha v for some unit \alpha \in \mathbb{Z}[i], i.e. if u \in \{\pm v, \pm iv\}
```

Proof. Obvious.

If $u, v \in \mathbb{Z}[i]$ are associate, then N(u) = N(v).

Jan Snellman

Definition

Norm

Units,irreducibles, primes

Division algorithm

Example

If α

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

$$= 3 + 4i \text{ then } N(\alpha) = N(\overline{\alpha}) = 3^2 + 4^2 = 25, \text{ yet } \alpha \not| \overline{\alpha} \text{ since}$$
$$\frac{3 - 4i}{3 + 4i} = \frac{(3 - 4i)^2}{25} = \frac{9 - 16 - 24i}{25} = \frac{-7}{25} + \frac{-24}{25}i \notin \mathbb{Z}[i]$$

Jan Snellman

Definition

Division algorithm

Division algorithm in $\ensuremath{\mathbb{Z}}$

- Rationalizing denominators
- Greatest common divisor
- Euclidean Algorithm

Unique factorization

- **Gaussian primes**
- Sums of two squares
- Pythagorean triples
- Congruences

Example

- $7/3 \in \mathbb{Q}$
- 7/3 = 2 + 1/3
- 7 = 2 * 3 + 1
- Quotient 2, remainder 1
- a = bq + r, $0 \le r < b$

- $q = \lfloor a/b \rfloor$, r = a bq
- Can also choose q to be closest integer to a/b, and |r| ≤ b/2
- 8/3 = 2 + 2/3 = 3 1/3
- 8 = 2 * 3 + 2 = 3 * 3 1

Jan Snellman

Definition

Division algorithm

Division algorithm in $\ensuremath{\mathbb{Z}}$

Rationalizing denominators

Greatest common divisor Euclidean Algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Theorem (Division algorithm)

If $\alpha, \beta \in \mathbb{Z}[i]$, $\beta \neq 0$, then exists (not necessarily unique) $\gamma, \rho \in \mathbb{Z}[i]$ such that

1
$$\alpha = \gamma\beta + \rho$$
,
2 $N(\rho) < N(\beta)$, (in fact, can achieve $N(\rho) \le \frac{1}{2}N(\beta)$)

Proof.

Calculate $\frac{\alpha}{\beta} = \frac{r}{t} + \frac{s}{t}i \in \mathbb{Q}[i]$ as before. Let u, v be closest integers to $\frac{r}{t}$ and $\frac{s}{t}$. Let $\gamma = u + iv$, $\rho = \alpha - \gamma\beta$.

Jan Snellman

Definition

Division algorithm

Division algorithm in $\ensuremath{\mathbb{Z}}$

Example

lf

lf

Rationalizing denominators

Greatest common divisor Euclidean Algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

$$\frac{1+8i}{2-4i} = \frac{(1+8i)(2+4i)}{20} = \frac{-30+20i}{20} = \frac{-3}{2} +$$
we take $\gamma = -1 + i$ then $\rho = -1 + 2i$, with norm 5.
we take $\gamma = -2 + i$ then $\rho = 1 - 2i$, also with norm 5.

Jan Snellman

Definition

Division algorithm

Division algorithm in \mathbb{Z} Rationalizing denominators

Greatest common divisor

Euclidean Algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Theorem

Let $\alpha, \beta \in \mathbb{Z}[i]$. For $\gamma \in \mathbb{Z}[i]$, the following are equivalent:

- $\begin{array}{l} \bullet \hspace{0.1 cm} \gamma | \alpha, \, \gamma | \beta \, \left(\text{ so } \gamma \text{ is a common divisor of } \alpha \text{ and } \beta \, \right) \text{ and if } \rho | \alpha, \, \rho | \beta \\ \text{ then } \rho | \gamma \end{array}$
- 2 $\gamma|\alpha,\,\gamma|\beta$ and if $\rho|\alpha,\,\rho|\beta$ then $N(\rho)\leq N(\gamma)$
- **3** $\gamma = u\alpha + v\beta$ for some $u, v \in \mathbb{Z}[i]$, and if $\rho = f\alpha + g\beta$ for some $f, g \in \mathbb{Z}[i]$ then $\gamma | \rho$

4 $\gamma = u\alpha + v\beta$ for some $u, v \in \mathbb{Z}[i]$, and if $\rho = f\alpha + g\beta$ for some $f, g \in \mathbb{Z}[i]$ then $N(\rho) \leq N(\gamma)$

Proof.

```
Same as for the integers, with |\cdot| replaced by N(\cdot).
```

Definition

In this case, we say that γ is a greatest common divisor of α and $\beta.$

Jan Snellman

Definition

Division algorithm

Division algorithm in \mathbb{Z} Rationalizing denominators

Greatest common divisor

Euclidean Algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Lemma

Any two gcd's of α , β are associate.

Obvious.

Proof.

Definition

 $\alpha, \beta \in \mathbb{Z}[i]$ are relatively prime if $gcd(\alpha, \beta) = 1$ (or a unit); equivalently, iff

 $u\alpha + v\beta = 1$

is solvable in $\mathbb{Z}[i]$.

Jan Snellman

Definition

Division algorithm

Division algorithm in Z Rationalizing denominators

Greatest common divisor

Euclidean Algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Lemma

If $\alpha = \gamma\beta + \rho$ with $N(\rho) < N(\beta)$, then $gcd(\alpha, \beta) = gcd(\beta, \rho)$

Theorem (Euclidean algorithm)

Iterate the above, then you'll get a greatest common divisor. Collect terms, and you'll get a Bezout expression.

Note that this works even though quotients and remainders are not unique.

Jan Snellman

Definition

Division algorithm

- Division algorithm in \mathbb{Z} Rationalizing denominators
- Greatest common divisor

Euclidean Algorithm

Unique factorization

- **Gaussian primes**
- Sums of two squares
- Pythagorean triples
- Congruences

Example

SO

$$11 + 3i = (1 - i)(1 + 8i) + 2 - 4i$$

$$1 + 8i = (-1 + i)(2 - 4i) + 1 - 2i$$

$$2 - 4i = 2(1 - 2i) + 0$$

$$\begin{aligned} \gcd(11+3i,1+8i) &= 1-2i = (1)(1+8i) + (1-i)(2-4i) = \\ &= (1)(1+8i) + (1-i)((11+3i) + (-1+i)(1+8i)) = \\ &= (1-i)(11+3i) + (1+(1-i)(-1+i))(1+8i) \end{aligned}$$

Jan Snellman

Definition

Division algorithm

Unique factorization

Irreducibles are primes

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Lemma

If $\alpha, \beta, \gamma \in \mathbb{Z}[i]$, $\alpha | \beta \gamma$, $gcd(\alpha, \beta) = 1$, then $\alpha | \gamma$.

Proof.

Since $\alpha | \beta \gamma$ we can write $\beta \gamma = \alpha w$ for some $w \in \mathbb{Z}[i]$. Furthermore, since $gcd(\alpha, \beta) = 1$, $1 = u\alpha + v\beta$,

so

$$\gamma = \gamma u \alpha + \gamma v \beta = \alpha \gamma u + \alpha w v = \alpha (u \gamma + w v)$$

Jan Snellman

Definition

Division algorithm

Unique factorization

Irreducibles are primes

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Lemma

If $\alpha \in \mathbb{Z}[i]$ is irreducible, then it is prime.

Proof.

Suppose that $\alpha | ab$. Since α is irreducible, $gcd(\alpha, a) = 1$, so by the previous lemma $\alpha | b$.

Lemma

If $\alpha \in \mathbb{Z}[i]$ is prime, then it is irreducible.

Proof.

Suppose, towards a contradiction, that $\alpha = ab$ with $N(a), N(b) < N(\alpha)$. Then $\alpha | ab$ but $\alpha \not| a, \alpha \not| b$.

Jan Snellman

Definition

Division algorithm

Unique factorization

Irreducibles are primes

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Theorem

Every $\alpha \in \mathbb{Z}[i]$ can be written as a (finite) product of (Gaussian) primes.

Proof.

If α is irreducible, it is prime, and we are done. If $\alpha = ab$ with N(a), $N(b) < N(\alpha)$, then by induction we can write a, b as products of prime. Combine.

Jan Snellman

Definition

Division algorithm

Unique factorization

Irreducibles are primes

```
Gaussian primes
```

Sums of two squares

Pythagorean triples

Congruences

Theorem (Unique factorization)

If $0 \neq \alpha \in \mathbb{Z}[i]$, then

$$\alpha = \pi_1 \cdots \pi_s$$

where the π_i 's are Gaussian primes. If furthermore

 $\alpha = q_1 \cdots q_t$

is another factorization of α into Gaussian primes, then t = s, and there is some permutation $\sigma \in S_s$ such that $q_j = \epsilon_j \pi_{\sigma(j)}$ for $1 \le j \le s$, with $N(\epsilon_j) = 1$.

Proof.

Similar to the integers.

Jan Snellman

Definition

Division algorithm

Example

Unique factorization

Irreducibles are primes

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Note that a (rational) prime p need not be a Gaussian prime. For instance,

$$5 = (1+2i)(1-2i) = (2-i)(2+i)$$

Here, (1 + 2i) and 2 - i are associate, as is 1 - 2i and 2 + i, so the two factorizations are (essentially) the same.

Jan Snellman

Definition

Division algorithm

```
Unique
factorization
Irreducibles are primes
```

```
Gaussian primes
```

```
Sums of two squares
```

```
Pythagorean triples
```

```
Congruences
```

Example

Let $\alpha = 3 + 4i$. Then $N(\alpha) = 9 + 16 = 25 = 5^2$. Thus, either α is a prime, or $\alpha = uv$ with N(u) = N(v) = 5. What can have norm 5? By exhaustive search, we find

1+2i, 1-2i, -1+2i, -1-2i, 2+i, 2-i, -2+i, -2-i

and that

$$3+4i = -(1-2i)^2$$

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Theorem

- Any $\alpha \in \mathbb{Z}[i]$ with even norm is divisible by 1+i
- 2 is not a Gaussian prime

Proof.

• Suppose that $N(a + ib) = (a + ib)(a - ib) = a^2 + b^2 = 2c$. Since (1 + i)(1 - i) = 2, we have

$$(a+ib)(a-ib) = (1+i)(1-i)c = (1+i)^2ic$$

Since N(1+i) = 2, 1+i is a Gaussian prime. By unique factorization, 1+i divides a+ib or a-ib. But if 1+i divides a-ib then 1-i divides a+ib, and 1+i is associate to 1-i.

• 2 = (1+i)(1-i).

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Lemma

Let π be a Gaussian prime. Then $\pi|p$ for some unique rational prime p.

Proof.

Put $N(\pi) = \pi \overline{\pi} = n$, and factor into rational primes, $n = p_1 \cdots p_r$. Then

$$\pi|
ho_1
ho_2\cdots
ho_r \quad \Longrightarrow \quad \pi|
ho_j$$
 some ho_j

But $\pi \alpha \in \mathbb{Z}[i]$ iff $\alpha = \overline{\pi}c$, $c \in \mathbb{Z}$; if $\pi \overline{\pi}c = p$ is prime, then $c = \pm 1$.

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization

Gaussian primes

- Sums of two squares
- Pythagorean triples
- Congruences

Theorem

A rational prime p factors in $\mathbb{Z}[i]$ iff it is a sum of two squares.

Proof.

- Suppose $p = \alpha\beta \in \mathbb{Z}[i]$, α, β non-units. Then $N(p) = p^2 = N(\alpha\beta) = N(\alpha)N(\beta)$. Hence $N(\alpha) = N(\beta) = p$. Write $\alpha = a + ib$, then $p = N(a + ib) = a^2 + b^2$, so p is a sum of two squares.
- Suppose $p = a^2 + b^2$, $a, b \in \mathbb{Z}$. Put $\alpha = a + ib$. Then

$$p = (a + ib)(a - ib) = \alpha \overline{\alpha}$$

is a non-trivial factorization of p.

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Corollary

Any rational prime $p \equiv 3 \mod 4$ is a Gaussian prime.

Proof.

Recall that such a rational prime can not be written as the sum of two squares.

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Corollary

A rational prime $p \equiv 1 \mod 4$ has exactly two non-associate Gaussian prime factors in $\mathbb{Z}[i]$.

Proof.

We know that

$$p = a^2 + b^2 = (a + ib)(a - ib)$$

where a + ib and a - ib have prime norm, and hence are Gaussian primes. We claim that they are not associate.

- 1 If a + ib = 1(a ib) then b = 0, hence $p = a^2$, contradicting p rational prime.
- **2** If a + ib = -(a ib) then a = 0.
- 3 If a + ib = i(a ib) = b + ia then a = b, hence $p = a^2 + b^2 = 2a^2$, a contradiction.
- If a + ib = -i(a ib) = -b ia then a = -b so $p = a^2 + b^2 = 2b^2$, a contradiction.

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Corollary

Let p be a rational prime.

- If p = 2 then $p = 2 = -(1+i)^2$
- If $p \equiv 1 \mod 4$ then $p = \pi \overline{\pi}$, where π and $\overline{\pi}$ are not associate.
- If $p \equiv 3 \mod 4$ then p is (also) a Gaussian prime.

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization

Gaussian primes

- Sums of two squares
- Pythagorean triples
- Congruences

Every Gaussian prime α is associate to either 1 + i 2 π or $\overline{\pi}$, where $N(\pi) = p$ is a rational prime, $p \equiv 1 \mod 4$,

3 p, where p is a rational prime, $p \equiv 3 \mod 4$.

Proof.

Theorem

- Every Gaussian prime α is a factor of some rational prime p
- Either p = 2, $p \equiv 1 \mod 4$, or $p \equiv 3 \mod 4$
- We now know how these rational primes factor in $\mathbb{Z}[i]$

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization

Gaussian primes

- Sums of two squares
- Pythagorean triples
- Congruences

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization

Gaussian primes

- Sums of two squares
- Pythagorean triples
- Congruences

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Theorem

If a rational prime p is a sum of two squares, say $p = a^2 + b^2$, then it is so expressible in an essentially unique way: a^2 and b^2 are uniquely determined (up to ordering).

Proof.

- $p = a^2 + b^2 = (a + ib)(a ib)$
- N(a+ib) = N(a-ib) = p, so a+ib, a-ib are Gaussian primes
- Suppose that $p = c^2 + d^2 = (c + id)(c id)$.
- By unique factorization, a + ib = u(c + id), u unit, or a + ib = u(c - id).
- In the first case, if u = 1, then c = -a and d = -b, so $c^2 = a^2$ and $d^2 = b^2$

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Theorem

Let the positive integer n have prime factorization

$$n=2^m\prod_{j=1}^s p_j^{e_j}\prod_{k=1}^t q_k^{f_k}$$

where the p_j 's are primes $\equiv 1 \mod 4$, the q_k 's are primes $\equiv 3 \mod 4$, and all f_k 's are even.

Then the number of ways of writing n as a sum of two squares, counting signs and order, is

$$4\prod_{j}(e_{j}+1)$$

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

• Count the ways to factor $n = u^2 + v^2 = (u + iv)(u - iv)$ in $\mathbb{Z}[i]$

• $2^m = i^m (1-i)^{2m}$

Proof.

- $p_j = (a_j + ib_j)(a_j ib_j)$, product non-associate Gaussian primes
- So $n = \epsilon (1-i)^{2m} \prod_{j=1}^{s} (a_j + ib_j) (a_j ib_j) \prod_{k=1}^{t} q_k^{f_k}$
- The factor u + iv is, by unique factorization of the form $\epsilon_0(1-i)^w \prod_{j=1}^s (a_j + ib_j)^{g_j} (a_j - ib_j)^{h_j} \prod_{k=1}^t \ell_k$ with $0 \le w \le 2m$, $0 \le g_j \le e_j$, $0 \le h_j \le e_j$, $0 \le \ell_k \le f_k$

•
$$u - iv = \overline{u + iv} = \overline{\epsilon_0}(1 - i)^w \prod_{j=1}^s (a_j - ib_j)^{g_j} (a_j + ib_j)^{h_j} \prod_{k=1}^t \ell_k$$

- $n = (u + iv)(u iv) = 2^w \prod_{j=1}^s p_j^{g_j + h_j} \prod_{k=1}^t q_k^{2\ell_k}$
- So w = m, $g_j + h_j = e_j$, $2\ell_k = f_k$, ϵ_0 unit
- So $e_j + 1$ choices for g_j , 4 choices for ϵ_0 .

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Example

(

$$n = 5^2 = (2+i)^2(2-i)^2$$

Possible factors u + iv are

$$(2+i)^2 = 3+4i, i(2+i)^2 = -4+3i, i^2(2+i)^2 = -3-4i, i^3(2+i)^2 = 4-3i, i^3(2+i)^2 = 4-4i, i^3(2+i)^2 = 4$$

and 6 more, yielding $n = (\pm 5)^2 + 0^2 = (\pm 3)^2 + (\pm 4)^2 = (\pm 4)^2 + (\pm 3)^2$.

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Example

$$13 = (2+3i)(2-3i),$$

with factors

$$2+3i, -3+2i, -2-3i, 3-2i, 2-3i, 3+2i, -2+3i, -3-2i$$

Hence

$$5^{2} * 13 = (2+i)^{2}(2-i)^{2}(2+3i)(2-3i)$$

one possible factor is

$$(2+i)^2(2+3i) = (3+4i)(2+3i) = -6+17i$$

SO

$$5^2 * 13 = (-6)^2 + 17^2.$$

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Theorem

Let 4F(n) denote the number of ways of writing n as a sum of squares. Then F is a multiplicative function, with values on prime powers given by

•
$$F(2^m) = 1$$
,

• if
$$q \equiv 3 \mod 4$$
 then $F(q^{2f}) = 1$ and $F(q^{2f+1}) = 0$

• if
$$p \equiv 1 \mod 4$$
 then $F(p^e) = e + 1$

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares

Pythagorean triples

Congruences

Recall:

Definition

- Solutions (in integers) to $a^2 + b^2 = c^2$ are called Ptyhagorean triples (PT)
- If gcd(a, b, c) = 1 then primitive Pythagoreant triple (PPT)

Lemma

- If (a, b, c) PPT, then gcd(a, b) = 1, a, b different parity, c odd
- Assume a odd, b even, then given by parametrization

$$a = u^2 - v^2$$
, $b = 2uv$, $c = u^2 + v^2$

with u > v > 0, gcd(u, v) = 1, u, v different parity.

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences

Let us prove this once again, now using Gaussian integers!

Sketch of proof

•
$$c^2 = a^2 + b^2 = (a + ib)(a - ib)$$

- First show $gcd(a + ib, a ib) = 1 \in \mathbb{Z}[i]$. Let δ be common divisor.
- δ divides a + ib, a ib, hence 2a and 2ib, hence 2b.
- δ is relatively prime to $2 = -i(1+i)^2$ since
 - 1 + i prime
 - **2** 1 + i divides δ iff $N(\delta)$ is even
 - **3** $\delta^2 | c^2$ so $N(\delta)^2 | c^4$; however, *c* is odd.
 - 4 So $gcd(\delta, 1+i) = 1$, hence $gcd(\delta, 2) = 1$
- So $\delta|2a \implies \delta|a$, and $\delta|2b \implies \delta|b$.
- Since $gcd(a, b) = 1 \in \mathbb{Z}$, by Bezout, 1 = ra + sb, thus by Bezout in $\mathbb{Z}[i]$, $gcd(a, b) = 1 \in \mathbb{Z}[i]$.

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares

Pythagorean triples

Congruences

Proof (contd)

- Hence $\delta = 1$, and gcd(a + ib, a ib) = 1.
 - $c^2 = a^2 + b^2 = (a + ib)(a ib)$, with gcd(a + ib, a ib) = 1. By unique factorization, $a + ib = \varepsilon(u + iv)^2$, with ε unit.
 - Also true that a ib is a square, up to a unit.
 - $-1 = i^2$ can be absorbed, so can take $\varepsilon \in \{1, i\}$.
 - $\varepsilon = 1$ gives $a + ib = u^2 v^2 + 2uvi$, $\varepsilon = i$ gives $a + ib = i(u^2 v^2) + 2uv$.
- Convention: *a* odd, so take first case.
- Easy check: u > v, different parity, relatively prime.

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Let us study a similar Diophantine equation.

Theorem

The integer solutions to

$$a^2 + b^2 = c^3$$

with gcd(a, b) = 1 are parametrized by

$$a = m^3 - 3mn^2$$
, $b = 3m^2n - n^3$, $c = m^2 + n^2$

with gcd(m, n) = 1, m, n different parity.

Proof.

Sketch of proof

- $c^3 = a^2 + b^2 = (a + ib)(a ib)$
- a + ib is a perfect cube, so

$$a+ib = (m+in)^3 = m^3 + 3m^2ni - 3mn^2 - in^3 = m^3 - 3mn^2 + (3m^2n - n^3)i$$

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares

Pythagorean triples

Congruences

• Yet another Diophantine (Rosen 14.3.8):

$$y^3 = x^2 + 1 = (x + i)(x - i)$$

- x + i, x i relatively prime
 - $x + i = (r + si)^3 = r^3 3rs^2 + i(3r^2s s^3)$
- $x = r(r^2 3s^2)$, $1 = s(3r^2 s^2)$
- So s = 1 or s = -1

- If s = 1 then $1 = 3r^2 1$, $3r^2 = 2$, impossible
- If s = -1 then $1 = -3r^2 + 1$, $3r^2 = 0$, r = 0, x = 0, y = 1

Jan Snellman

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- **Pythagorean** triples

Congruences

Representatives, transversals Fermat and euler

Definition

α

if

,
$$eta,\gamma\in\mathbb{Z}[i]$$
, $\gamma
eq 0.$
and only if $\gamma|(lpha-eta)$

Example

$$(3+4i)(3-4i) = 25$$

 $\mod \gamma$

ß

so (3+4i)|25, and

 $7+2i \equiv 32+2i \mod 3+4i$

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

Lemma

- For fixed γ , equivalence relation on $\mathbb{Z}[i]$
- Congruence, i.e. if $\alpha_1 \equiv \alpha_2 \mod \gamma$, $\beta_1 \equiv \beta_2 \mod \gamma$, then $\alpha_1 + \beta_1 \equiv \alpha_2 + \beta_2 \mod \gamma$, and $\alpha_1\beta_1 \equiv \alpha_2\beta_2 \mod \gamma$.

Example

50

$$2+5i \equiv i \mod 1+2i$$

$$(2+5i)^{16} \equiv i^{16} \equiv 1 \mod 1+2i$$

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

Lemma

If $a, b, n \in \mathbb{Z}$ then a|b in $\mathbb{Z}[i]$ iff a|b in \mathbb{Z} . Similarly, $a \equiv b \mod n$ in $\mathbb{Z}[i]$ iff $a \equiv b \mod n$ in \mathbb{Z} .

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

Definition

 $\frac{\mathbb{Z}[i]}{(\gamma)}$ is the set of congruence classes $[\alpha] \mod \gamma$, made into a ring by the well-defined operations

$$[\alpha] + [\beta] = [\alpha + \beta]$$
$$[\alpha][\beta] = [\alpha\beta]$$

Lemma

 ^{Z[i]}/_(γ) is a field if and only if γ is a Gaussian prime

 ^{Z[i]}/_(γ) is finite

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

Example

 $\gamma = (1+i)(2+3i) = -1+5i$ is composite, so $\mathbb{Z}[i]/(\gamma)$ has zero-divisors, and is not a field. That does not mean that all elements are non-invertible:

$$\gcd(5\sqrt{-1}-1, 2\sqrt{-1}+3) = -1$$

and

$$1 = (-\sqrt{-1} - 2)(5\sqrt{-1} - 1) + (3\sqrt{-1})(2\sqrt{-1} + 3)$$

SO

$$(2\sqrt{-1}+3)(3\sqrt{-1})\equiv 1 \mod 5\sqrt{-1}-1$$

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

If $u, v, \alpha, \beta \in \mathbb{Z}[i]$, with α, β relatively prime, then the system of congruences

 $x \equiv u \mod \alpha$ $x \equiv v \mod \beta$

is solvable, and soln unique mod $\alpha\beta$.

Theorem

Jan Snellman

Definition

Division algorithm

Unique factorization

Gaussian primes

Sums of two squares

Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

$x = 7\sqrt{-1} + 5 \mod 17\sqrt{-1} + 13$

$$x \equiv 13\sqrt{-1} + 11 \mod 11\sqrt{-1} + 13$$

 $x \equiv 13\sqrt{-1} + 11 \mod 23\sqrt{-1} + 19$

has solution $x = 126\sqrt{-1} + 624$.

Example

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- **Gaussian primes**
- Sums of two squares

Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

Theorem

Let $\alpha \in \mathbb{Z}[i] \setminus \{0\}$

- **1** The congruence class [0] forms a lattice in $\mathbb{Z}[i]$, the class [β] is the translate $\beta + [0]$
- 2 Let H = { sα + tiα | 0 ≤ s, t ≤ 1 } ∩ Z[i]. Then H constitute a complete set of residues for Z[i] mod α. Removing lattice points on the edges s = 1 and t = 1 that are congruent mod α to other lattice points in H we get a reduced set of residues
- **3** $\mathbb{Z}[i]/(\alpha)$ has $N(\alpha)$ elements

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

Example

$\alpha = 2 + 3i$, multiples of α in red:

L									10 -	. .										
	2								10	I.							2			
	2						2	2		Ι.					2	2	2	2		
							2	1		Ι						2	2	1	1	
								Ľ		Ι								Ľ	Ľ	
										Ι								1		
									•5 •	Ι								1	1	
	•	•					•	•	•	Ī					•	•	•	•	•	•
· ·	•	• •				•	•	•	•	ľ				•	•	•	•	•	•	•
· ·	•	•				•	•	•	•	1				•	•	•	•	•	•	•
•	•	•				•	•	•	•	1				•	•	•	•	•	•	•
-10	•	•	-	_	5	•	•	•	•	<u> </u>	-	-	_	•	5	•	•	•	•	10
-10	•			-	5	•	•	•	•			_		•	5	•	•	•	•	10
-10	•	•		-	5	•	•	•	•					•	5	•	•	•	•	10
-10				-	5	•	•	•	•					•	5 •	•	•	•	•	10
-10	•	•		-	5	•	•	•	• •					•	5 • •	•	•	•	•	10
-10	•			-	5	•	•	•	•5 -					•	5 • •	•	•	•	•	10
-10	•			-	5	•	• • • •	•	• •					•	5	•	•	•	•	10
-10	•			-	5	•	• • • • • • • • • • • • • • • • • • • •	•	• • •					•	5 • • •	•	•	•	•	10
-10	•				5	•	• • • • •	•	• •					•	5	•	•	•	•	10
-10	• • • • •				5	•	• • • • •	• • • • • •	• • •					•	5	•	•	• • • • • •	•	10

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

Example

We zoom in on the fundamental region:

N(2+3i) = 4+9 = 13 and there are 12 interior lattice points, none on the edges, the 4 vertices all congruent, we pick 0.

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

Theorem

If $\pi, \alpha \in \mathbb{Z}[i]$, with π a Gaussian prime, $\alpha \neq 0$, then

$$lpha^{{\sf N}(\pi)-1}\equiv 1 \mod \pi$$

Proof.

Similar to the proof for the integers: choose a complete, reduced set of residues for $\mathbb{Z}[i]$ modulo π , multiply the non-zero classes together. Also scale this set by α and then multiply together. Equate, and pull out the factor $\alpha^{N(\pi)-1}$.

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences Representatives, transversals

Fermat and euler

Example

Take
$$\alpha = 1 + 2i$$
, $\pi = 3 + 4i$. Then $N(\pi) = 25$, and $gcd(\alpha, \pi) = 1$, so
 $(1 + 2i)^{24} \equiv 1 \equiv 1 + i(3 + 4i) \equiv -3 + 3i \mod 3 + 4i$

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares
- Pythagorean triples

Congruences Representatives,

transversals

Definition

For
$$\alpha \in \mathbb{Z}[i] \setminus \{0\}, \ \varphi_{\mathbb{Z}[i]}(\alpha) = \left| \left(\frac{\mathbb{Z}[i]}{(\alpha)} \right)^{\times} \right|$$

Lemma

 $\varphi_{\mathbb{Z}[i]}(\cdot)$ is multiplicative; it's value on powers of Gaussian primes is

$$\phi_{\mathbb{Z}[i]}(\pi^k) = N(\pi)^{k-1} \left(N(\pi) - 1 \right)$$

Jan Snellman

Definition

- **Division algorithm**
- Unique factorization
- Gaussian primes
- Sums of two squares

Pythagorean triples

Congruences

Representatives, transversals Fermat and euler

Theorem

For $\alpha, \beta \in \mathbb{Z}[i] \setminus \{0\}$, with $gcd(\alpha, \beta) = 1$,

$$eta^{igoplus_{\mathbb{Z}[i]}(lpha)}\equiv 1 \mod lpha$$

Example

 $\phi(5) = 4, \text{ but}$ $\phi_{\mathbb{Z}[i]}(5) = \phi_{\mathbb{Z}[i]}((1+2i)(1-2i)) = (N(1+2i)-1)(N(1-2i)-1) = 16.$ Hence (2+2i)¹⁶ = 1 = -15

$$(2+3i)^{16} \equiv 1 \mod 5,$$

SO

$$(2+3i)^{33} \equiv 2+3i \mod 5$$