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® conjugate Z=a— ib

® norm N(z) = zz = a* + b?
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Gaussian primes Lemma

Sums of two N(zw) = N(z)N(w)
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Definition
Norm
Units,irreducibles, Z[/] = { a—+ Ib‘ a, b c Z}
primes

Lemma

® 7l[i] subring of C
Not a subfield (1/2 ¢ Z[i])

Integral domain (no zero-divisors)

Principal ideal domain

Euclidean domain
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Norm Lemma
Units,irreducibles, . . 9n0
primes If N(«) = n then vp(n) is even for all p =3 mod 4. If n is a positive

integer such that v,(n) is even for all p =3 mod 4, then n is the norm of
some « € Zl[i].

Proof.

If « =a+ibthen n = N(a) = a® + b? is a sum of two squares. Thus,
every prime congruent to 3 mod 4 occurse with even multiplicity; the
converse also holds. O



722
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Norm oL
ion
Units,irreducibles, Definit
es ]
o o B € 2]

® «|f iff exists y € Zli] s.t. p =y«
® «isa unit if x|l
® «, 3 are associate if |3 and |«

® « is irreducible if any divisor is a unit or associate to o

o is a (Gaussian) prime if &|B132 implies that |1 or &|B2 (or both)
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Norm

Units,irreducibles,
primes

Definition

Qlil={a+ bila,be Q}

Lemma

o 7l[i] subring of Q[i], which is a subfield of C, and a quadratic field
extension of

® Qli] is the field of fractions of Z[i in the same way that Q is for Z,
namely, it is the smallest field containing Z.]i]

e So, if «, B € ZIi], with B # 0, then it is always true that % e Qlil,
but % € ZI[i] if and only if B|a
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Norm

Units,irreducibles,
primes

Example

2+3i  (2+430)(1+7) -1+5 -1 5
=7 - ara=n - 2 2 T2 cQihZl,

sol—i f2+3i.
On the other hand,

3—i _B—i(+i) _4+2i

=2+ € Z[i,

1—i (1+)(1—1) 2

sol—il3—1i.



o|B implies that N(o)|N(p

Follows from multiplicativity of the norm. O
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Norm

Units,irreducibles,
primes

Corollary

® N(x)=1iff x is a unit iff x € {+1, £i}

® if N(x) is a (rational) prime, then o is irreducible.

Proof.

e 1=N(1)= N(oc%() = N(oc)N(%(), so since N(«) and N(%) are
positive integers, they are both 1.
e If o« = By with N(), N(y) > 1, then N(x) = N(B)N(y), a

contradiction.
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Norm Lemma
Units,irreducibles, P . . . . 0 g
primes u,v € ZIi] are associate iff u = av for some unit « € Z[il, i.e. if

u € {£v, £iv}

Proof.

Obvious.

Lemma

If u,v € Z[i] are associate, then N(u) = N(v).
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Norm

Units,irreducibles,
primes

Example
If o =3+ 4i then N() = N(x) = 32 + 42 = 25, yet o Jo since

3—4 3—4/)2 9—16—24] —7 —24. )
3+4i 25 25 25 25
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Division algorithm in Z

Rationalizing
denominators
Greatest common
divisor

Euclidean Algorithm

Example

7/3€Q
7/3=2+1/3
7T=2x3+1

Quotient 2, remainder 1
a=bg+r,0<r<b

qg=la/b], r=a—bg
Can also choose g to be closest
integer to a/b, and |r| < b/2

8/3=2+2/3=3-1/3
8=2x3+2=3x3—-1
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Theorem (Division algorithm)

Division algorithm in Z If &, 3 € Zlil, p # 0, then exists (not necessarily unique) v, p € Zli] such

Rationalizing
denominators that

Greatest common

divisor 0 X = ‘YB + pr
Sl ® N(p) < N(B), (in fact, can achieve N(p) < %N(B))

Proof.

Calculate & BTt ¢+ + 31 € Qli] as before. Let u, v be closest integers to ;
and 3. Lety—u+/v,p—oc—y[3. O]
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Definition

Division algorithm
Division algorithm in Z

Rationalizing
denominators

Greatest common
divisor
Euclidean Algorithm

Unique
factorization

Gaussian primes

Sums of two
squares

Pythagorean
triples

Congruences

Example

If we take y = —1 + i then p = —1 + 2/, with norm 5.

1+8i

(L+8i)(2+4i)

—30 + 20/

2_4i

20

20

If we take y = —2 + i then p =1 — 2/, also with norm 5.
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Division algorithm in Z

Rationalizing
denominators
Greatest common
divisor

Euclidean Algorithm

Theorem
Let «, B € ZIi]. Forvy € 7Zli], the following are equivalent:

® v|x, v|B (soy is a common divisor of o and 3 ) and if p|e, p|f3
then ply

@ v|o v|B and if plo, p|B then N(p) < N(y)
© vy = ux+ vp for some u,v € Zli], and if p = f+ g for some
f,g € Zl[il then y|p

O v = ux+ vp for some u,v € Z[il, and if p = fa+ gp for some
f,g € Z[i] then N(p) < N(v)

Proof.
Same as for the integers, with | - | replaced by N(-).

Definition

In this case, we say that y is a greatest common divisor of o« and f3.
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Division algorithm in Z
Rationalizing
denominators
Greatest common
divisor

Euclidean Algorithm

Lemma

Any two gcd's of «, 3 are associate.

Proof.
Obvious. ]

Definition

«, B € ZI[i] are relatively prime if gcd(x, 3) =1 (or a unit); equivalently, iff
ux+vp =1

is solvable in Z[i].
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Division algorithm in Z
Rationalizing
denominators

Greatest common
divisor
Euclidean Algorithm

Lemma
If =y + p with N(p) < N(B), then gcd(e, B) = ged(B, p)

Theorem (Euclidean algorithm)

Iterate the above, then you'll get a greatest common divisor. Collect
terms, and you'll get a Bezout expression.

Note that this works even though quotients and remainders are not unique.
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Division algorithm in Z
Rationalizing
denominators

Greatest common
divisor
Euclidean Algorithm

Example
11+3i=(1—/)(1+8i)+2—4i
1+8i=(—1+/)2—4))+1—2i
2—4i=2(1—-2i)+0
o)

ged(11+3i,1+8i) =1 —2i = (1)(1+8i) + (1 — i)(2 — 4i) =
= (1)(148i) + (1 — i)((11 4 3i) + (=1 + /) (1 + 81))
=(1—NA14+3) 4+ 1+ 1 —)(-14))(1+8))
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Irreducibles are primes

Lemma

If &, B,y € ZIil, «|By, ged(e, B) =1, then «|y.

Proof.
Since |y we can write By = aw for some w € Z[i]. Furthermore, since
ng(‘X) B) =1,

1=uvx+vp,

30)
Y =vux+vyvp = ayu+ owv = x(uy + wv)
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Lemma

If « € Z[i] is irreducible, then it is prime.

Proof.

Suppose that oab. Since « is irreducible, ged(«, a) = 1, so by the
previous lemma «/b. O

Irreducibles are primes

Lemma

If « € Z[i] is prime, then it is irreducible.

Proof.

Suppose, towards a contradiction, that o = ab with N(a), N(b) < N(«).
Then «lab but « fa, « fb. O



Number Theory, Lecture 11

Jan Snellman

Theorem

Every « € Z[i] can be written as a (finite) product of (Gaussian) primes.

Irreducibles are primes

Proof.

If o is irreducible, it is prime, and we are done.

If o« = ab with N(a), N(b) < N(«), then by induction we can write a, b as
products of prime. Combine. O
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Irreducibles are primes

Theorem (Unique factorization)

If0 # o« € ZIi], then
X =TTl

where the m;’s are Gaussian primes. If furthermore

X=4qgi---qt

is another factorization of o« into Gaussian primes, then t = s, and there is
some permutation 0 € Ss such that q; = €;7q(;) for 1 < j <'s, with
N(ej) =5

Proof.

Similar to the integers. Ol
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Example

Note that a (rational) prime p need not be a Gaussian prime. For instance,

Irreducibles are primes

5=(1+2i)(1—2i)=(2—2+i)

Here, (1 + 2/) and 2 — / are associate, as is 1 — 2/ and 2 + /, so the two
factorizations are (essentially) the same.
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Example

Let « =3 +4i. Then N(a) =9+ 16 = 25 = 52. Thus, either « is a
_ _ prime, or o« = uv with N(u) = N(v) =5.
trreducibles are primes What can have norm 57 By exhaustive search, we find

1+2i1—2i—142i,—1—20,2+i,2—i,—2+i—2—i

and that
3+ 4i=—(1—2i)2
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® Any « € ZI[i] with even norm is divisible by 1 + i
® 2 js not a Gaussian prime

Proof.

® Suppose that N(a+ ib) = (a+ ib)(a— ib) = a*> + b?> = 2c. Since
(14+7)(1—1i) =2, we have

Gaussian primes

(a+ib)(a—ib) = (1+)(1—i)c=(1+i)ic

Since N(1+ i) =2, 1+ i is a Gaussian prime. By unique factorization,
1+ / divides a+ ib or a — ib.
But if 1 + / divides a — ib then 1 — / divides a+ ib, and 1 + 1/ is
associate to 1 — /.

© 2= (1+4/)(1—1).
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Lemma

Let 7t be a Gaussian prime. Then mt|p for some unique rational prime p.

Gaussian primes Proof.

Put N(7t) = it = n, and factor into rational primes, n = py--- p,. Then
nlpip2---pr =  T|p; some p;

But o € Z[i] iff o« = Ttc, ¢ € Z; if mitc = p is prime, then ¢ = £1. O
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A rational prime p factors in Z[i] iff it is a sum of two squares.

Proof.

® Suppose p = «f} € ZIi], &, f non-units. Then

Gaussian primes N(p) = p?> = N(xp) = N(x)N(B). Hence N(x) = N(B) = p. Write
o= a+ ib, then p = N(a+ ib) = a®> + b?, so p is a sum of two
squares.

® Suppose p=a’+ b? a,b € Z. Put x =a+ ib. Then
p=(a+ib)(a—ib) = axx

is a non-trivial factorization of p.
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Corollary

Any rational prime p =3 mod 4 is a Gaussian prime.
Gaussian primes

Proof.

Recall that such a rational prime can not be written as the sum of two
squares. []
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Gaussian primes

Corollary

A rational prime p =1 mod 4 has exactly two non-associate Gaussian
prime factors in Z[i].

Proof.

We know that
p=a’+b®>=(a+ib)(a—ib)

where a + ib and a — ib have prime norm, and hence are Gaussian primes.

We claim that they are not associate.
© If a+ib=1(a—ib) then b =0, hence p = a°, contradicting p
rational prime.
® If a+ib=—(a—ib) then a=0.

© Ifa+ib=i(a—ib)=b+iathen a=b, hence p=a®+ b*> =22a% a

contradiction.
O Ifa+ib=—i(a—ib) =—b—iathen a=—bso p=a®+ b? =2b?
contradiction.

a

O
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Corollary

Let p be a rational prime.

Gaussi .
aussian primes a /fp _ 2 then p _ 2 _ —(1 + /)2
® /[fp=1 mod 4 then p = T, where T and Tt are not associate.

e |[f p=3 mod 4 then p is (also) a Gaussian prime.
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Theorem
Every Gaussian prime « is associate to either
Q1+
® 7 or T, where N(mt) = p is a rational prime, p =1 mod 4,

Gaussian primes © p, where p is a rational prime, p =3 mod 4.

Proof.
® Every Gaussian prime « is a factor of some rational prime p
® Either p=2, p=1 mod 4, or p=3 mod 4

® \We now know how these rational primes factor in Z[/]
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Definition
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Unique
factorization

Gaussian primes

Sums of two
squares

Pythagorean
triples

Congruences
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Gaussian primes

ggoe¢

5ot

0 bbbt 9 bbb bbbt bbbt 9 bbbt

D000 000000000 eSS 0000000002000000000$2000000000000000000¢

.
e
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Definition
Division algorithm

Unique
factorization

Gaussian primes

Sums of two
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Definition
Division algorithm

Unique
factorization

Gaussian primes

Sums of two
squares

Pythagorean
triples

Congruences
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Sums of two
squares

Theorem

If a rational prime p is a sum of two squares, say p = a®> + b?, then it is so
expressible in an essentially unique way: a® and b? are uniquely
determined (up to ordering).

Proof.

® p=a’+ b?>=(a+ib)(a—ib)
N(a+ ib) = N(a—ib) = p, so a+ ib, a— ib are Gaussian primes
Suppose that p = c? + d? = (c + id)(c — id).
By unique factorization, a+ ib = u(c + id), u unit, or
a+ib=u(c—id).
In the first case, if u =1, then ¢ = —a and d = —b, so ¢ = a® and
d2 — b2

Ol
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Theorem

Let the positive integer n have prime factorization

s t
__om & fi
n=2"[1p"]]a
j=1 k=1
Sums of two

squares where the p;’s are primes =1 mod 4, the g, s are primes = 3 mod 4,

and all fy's are even.
Then the number of ways of writing n as a sum of two squares, counting

signs and order, is
4 H(ej +1)
J
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Sums of two
squares

Proof.

Count the ways to factor n = u? + v? = (u+ iv)(u— iv) in Z[i]
D — (T, — )P

p; = (aj + ibj)(a;j — ib;), product non-associate Gaussian primes
So n=e(1— )2 [T5_1(a; + ibj)(a; — ib) TTj_y qf

The factor u + iv is, by unique factorization of the form

eo(1— )" TT;_y(aj + ibj)® (aj — ib) " TTj—y &k with 0 < w < 2m,
0<g<e,0<h <e, 08 <fi

u—iv:u+iv:?0(1—i)WH7 (aj — ib)8 (aj + ib)) " [Th_;

n=(u+iv)(u—iv)=2"T[L 1pgﬁhjl_[ et q ,Zf"
Sow =m, gj + hj = ¢}, 2l; = fi, €o unit

So ¢ + 1 choices for gj, 4 choices for €o.
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Example

n=>5"=(2+i)?(2-i)?

Possible factors u + iv are

Saures (2+)2 = 3+4i, i(2+1)2 = —4+3i, i2(2+1)2 = —3—4i, #(2+)? = 4-3i,
2+)2—i)=5
2—2=3—4i

and 6 more, yielding n = (£5)% + 0% = (£3)% + (+4)% = (+4)% + (£3)2.
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13 =(2+3i)(2—3i),
with factors
2+4+3i,—3+2i,—2—3i,3—2i,2—3/,34+2i,—2+3i,—3—2f

Sums of two

squares Hence

52513 = (24 1)%(2—)?(2 + 3/)(2 — 3i),
one possible factor is
(2+)%(243i)=(3+4))(2+3i) =—6+17i

SO
52 %13 = (—6)% + 172
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Theorem

Let 4F(n) denote the number of ways of writing n as a sum of squares.
Then F is a multiplicative function, with values on prime powers given by

Sums of two °® F(2m) =1,
Stillates * ifg=3 mod 4 then F(¢*") =1 and F(¢**1) =0
°® fp=1 mod 4 then F(p¢) = e+1
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Definition
e Solutions (in integers) to a® + b? = 2
(PT)

® |If gcd(a, b, c) =1 then primitive Pythagoreant triple (PPT)

are called Ptyhagorean triples

Lemma

fytlhagorea" ® [f(a,b,c) PPT, then gcd(a, b) =1, a, b different parity, ¢ odd
riples

® Assume a odd, b even, then given by parametrization
a=u’— 2% b=2uv, c=u?+ 2

with u > v > 0, gcd(u, v) = 1, u, v different parity.
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Sketch of proof

o 2=224b%>=(a+ib)(a—ib)
e First show gcd(a+ ibya— ib) =1 € Z[i]. Let & be common divisor.
® § divides a + ib, a — ib, hence 2a and 2ib, hence 2b.
§ is relatively prime to 2 = —i(1 4 i)? since
@ 1+ prime
Pythagorean @® 1+ divides d iff N(d) is even
triples © 5°|c? so N(8)2|c*; however, c is odd.
O So gcd(d,1+ i) =1, hence ged(4,2) =1
So §|2a = b|a, and 8|]2b = |b.
Since gcd(a, b) =1 € Z, by Bezout, 1 = ra + sb, thus by Bezout in
Zli], gcd(a, b) = 1 € Zli].
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Proof (contd)

® Hence 6 =1, and gcd(a+ ib,a— ib) = 1.

e 2 =2a%+b?>=(a+ib)(a—ib), with gcd(a+ ibya—ib) = 1. By
unique factorization, a + ib = e(u + iv)?, with € unit.

® Also true that a— ib is a square, up to a unit.

e —1 =2 can be absorbed, so can take € € {1, /.

E{;H;gorea" e ¢ =1gives a+ib=u?—v?+2uvi, ¢ =i gives

a+ib=i(u®—v?) +2uv.

e Convention: a odd, so take first case.

® FEasy check: u > v, different parity, relatively prime.



Wiy Thiesm, (e 1l Let us study a similar Diophantine equation.
Jan Snellman Theorem
The integer solutions to
aZ+bp=c
with ged(a, b) = 1 are parametrized by
a=m3—3mn? b=3m?n—nd, c=m?+n?
with gcd(m, n) = 1, m, n different parity.

Pythagorean
triples Proof.

Sketch of proof
e 3=2324+h2=(a+ib)(a—ib)

® a2+ ibis a perfect cube, so

8

a+ib = (m+in)® = m*+3m?ni—3mn®—in® = m®>=3mn®+(3m?n—n3)i

O
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Yet another Diophantine (Rosen 14.3.8):
V¥=x>4+1=(x+i)(x—1)

® x4+ i,x — i relatively prime

x+i=(r+si)3=r3—3rs?+i(3r’s—s%)
x =r(r*—3s?), 1 =5s(3r>—s?)
® Sos=1lors=-1
If s=1then1=3r2—1,3r2 =2, impossible
o lfs=—1thenl=-3r2+1,3r>=0,r=0,x=0,y=1

Pythagorean
triples
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Congruences

Representatives,
transversals

Fermat and euler

Definition

o, B,y € Zlil, y # 0.

if and only if

Example

so (3 +4i)|25, and

x=f modvy

Y| (o —

B)

(3+4i)(3—4i) =25

T+21=32+2i

mod 3+ 4/



Number Theory, Lecture 11

Jan Snellman

Lemma

® For fixed 'y, equivalence relation on Z[i]

® (Congruence, i.e. if x; = op mod vy, 1 = 32 mod vy, then
o1 +P1 =0+ P2 mody, and x;31 = x232 mod .

Example
24+5i=i mod1l+42i
Congruences
Representatives, SO
transversals

Fermat and euler

mod 1+ 2/
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Definition
Division algorithm

Unique

factorization Lemma

If a, b, n € Z then a|b in Z[i] iff a|b in Z.
Similarly, a= b mod n in Z[i] iffa= b mod n inZ.

Gaussian primes

Sums of two
squares

Pythagorean
triples

Congruences

Representatives,
transversals

Fermat and euler
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Congruences

Representatives,
transversals

Fermat and euler

Definition
Z—[i)] is the set of congruence classes [] mod vy, made into a ring by the

well-defined operations

(] + [B] = [ + B]
[x][B] = [xf]

Lemma

(]
3

7= is a field if and only ify is a Gaussian prime

N

is finite

2
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Congruences

Representatives,
transversals

Fermat and euler

Example

v=(14+0)(2+3)

—1 + 5/ is composite, so Z[i]/(y) has zero-divisors,
and is not a field. That does not mean that all elements are non-invertible

ged(bv—1—1,2¢/—-143)=-1

and

1=(—vV/=1-2)5v/=1—1)+ (3V=1)(2V=1+3)

SO

(2v/=1+3)(3V=1)=1 mod 5vV—-1-1
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Congruences

Representatives,
transversals

Fermat and euler

CRT

Theorem

If uyv, o, B € ZIil, with , 3 relatively prime, then the system of
congruences

X =u mod «

x=v mod

is solvable, and soln unique mod 3.
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Definition

Division algorithm
= Example

Unique

factorization

Gaussian primes

Sums of two x=7v—14+5 mod17v—1+13

squares x=13v—1+4+11 mod 23v—1+ 19

Pythagorean

triples has solution x = 1261/—1 + 624.

Congruences

Representatives,
transversals

Fermat and euler
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Theorem
Let « € ZI[i] \ {0}

@ The congruence class [0] forms a lattice in Z[i], the class [B] is the
translate 3 + (0]

@ Let H={sa+tia|0 <s,t <1}NZ[il. Then H constitute a
complete set of residues for Z[i] mod «. Removing lattice points on
the edges s =1 and t = 1 that are congruent mod « to other lattice
points in H we get a reduced set of residues

Representatives, © Z[il/(x) has N(x) elements
transversals

Fermat and euler
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Representatives,
transversals

Fermat and euler

Example

o = 2+ 3/, multiples of « in red:
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We zoom in on the fundamental region:

Representatives,
transversals

Fermat and euler

N(2+ 3i) =4+ 9 = 13 and there are 12 interior lattice points, none on
the edges, the 4 vertices all congruent, we pick 0.
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Representatives,
transversals

Fermat and euler

Theorem

If T, « € Z[i], with T a Gaussian prime, & # 0, then

N(m)

N1 =1 modn

Proof.

Similar to the proof for the integers: choose a complete, reduced set of
residues for Z[i] modulo 7t, multiply the non-zero classes together. Also
scale this set by o« and then multiply together. Equate, and pull out the
factor aNW—1,
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Take « =1+ 2i, t=3+4i. Then N(7) =25, and gcd(x, 1) =1, so

(1+2)**=1=1+i3+4i)=-3+3i mod3+4i

w

Representatives,
transversals

Fermat and euler
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Definition

For o € Z[i1\ {0}, dz(x) = ‘(%ﬂ) ;

Lemma

&y (¢) is multiplicative; it's value on powers of Gaussian primes is

bz () = N(m)*H (N(m) — 1)

Representatives,
transversals

Fermat and euler
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Theorem
For o, B € Z[i] \ {0}, with gcd(a, B) =1,

BPzi(®) =1 mod «

Example
®(5) =4, but
&z (5) = bz (1 +20)(1—2i)) = (N(1 +2i) — 1)(N(1 —2i) — 1) = 16.
Hence
Representatives, (2 ar 3i)16 =1 mod 5)
R 50

(2+3i)**=2+3i mod 5,
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