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Definition

• z = a + ib ∈ C
• conjugate z = a − ib

• norm N(z) = zz = a2 + b2

Lemma

N(zw) = N(z)N(w)

Proof.

zw = zw
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Definition

Z[i ] = { a + ib a, b ∈ Z }

Lemma

• Z[i ] subring of C
• Not a subfield (1/2 6∈ Z[i ])
• Integral domain (no zero-divisors)

• Principal ideal domain

• Euclidean domain
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Lemma

If N(α) = n then vp(n) is even for all p ≡ 3 mod 4. If n is a positive

integer such that vp(n) is even for all p ≡ 3 mod 4, then n is the norm of

some α ∈ Z[i ].

Proof.

If α = a + ib then n = N(α) = a2 + b2 is a sum of two squares. Thus,

every prime congruent to 3 mod 4 occurse with even multiplicity; the

converse also holds.
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-4 -2 2 4

-4
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Definition

α,β ∈ Z[i ]
• α|β iff exists γ ∈ Z[i ] s.t. β = γα

• α is a unit if α|1
• α,β are associate if α|β and β|α
• α is irreducible if any divisor is a unit or associate to α

• α is a (Gaussian) prime if α|β1β2 implies that α|β1 or α|β2 (or both)
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Q[i ]

Definition

Q[i ] = { a + bi a, b ∈ Q }

Lemma

• Z[i ] subring of Q[i ], which is a subfield of C, and a quadratic field

extension of Q
• Q[i ] is the field of fractions of Z[i in the same way that Q is for Z,

namely, it is the smallest field containing Z[i ]
• So, if α,β ∈ Z[i ], with β 6= 0, then it is always true that α

β ∈ Q[i ],

but α
β ∈ Z[i ] if and only if β|α
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Example

2 + 3i

1 − i
=

(2 + 3i)(1 + i)

(1 + i)(1 − i)
=

−1 + 5i

2
=

−1

2
+

5

2
i ∈ Q[i ] \ Z[i ],

so 1 − i 6 |2 + 3i .

On the other hand,

3 − i

1 − i
=

(3 − i)(1 + i)

(1 + i)(1 − i)
=

4 + 2i

2
= 2 + i ∈ Z[i ],

so 1 − i |3 − i .
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Lemma

α|β implies that N(α)|N(β)

Proof.

Follows from multiplicativity of the norm.
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Corollary

• N(α) = 1 iff α is a unit iff α ∈ {±1,±i }

• if N(α) is a (rational) prime, then α is irreducible.

Proof.

• 1 = N(1) = N(α 1
α) = N(α)N( 1α), so since N(α) and N( 1α) are

positive integers, they are both 1.

• If α = βγ with N(β),N(γ) > 1, then N(α) = N(β)N(γ), a

contradiction.
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Lemma

u, v ∈ Z[i ] are associate iff u = αv for some unit α ∈ Z[i ], i.e. if

u ∈ {±v ,±iv }

Proof.

Obvious.

Lemma

If u, v ∈ Z[i ] are associate, then N(u) = N(v).
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Example

If α = 3 + 4i then N(α) = N(α) = 32 + 42 = 25, yet α 6 |α since

3 − 4i

3 + 4i
=

(3 − 4i)2

25
=

9 − 16 − 24i

25
=

−7

25
+

−24

25
i 6∈ Z[i ]
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Example

• 7/3 ∈ Q
• 7/3 = 2 + 1/3

• 7 = 2 ∗ 3 + 1

• Quotient 2, remainder 1

• a = bq + r , 0 ≤ r < b

• q = ba/bc, r = a − bq

• Can also choose q to be closest

integer to a/b, and |r | ≤ b/2

• 8/3 = 2 + 2/3 = 3 − 1/3

• 8 = 2 ∗ 3 + 2 = 3 ∗ 3 − 1
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Theorem (Division algorithm)

If α,β ∈ Z[i ], β 6= 0, then exists (not necessarily unique) γ, ρ ∈ Z[i ] such

that

1 α = γβ+ ρ,

2 N(ρ) < N(β), (in fact, can achieve N(ρ) ≤ 1
2N(β))

Proof.

Calculate α
β = r

t +
s
t i ∈ Q[i ] as before. Let u, v be closest integers to r

t

and s
t . Let γ = u + iv , ρ = α− γβ.
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Example

1 + 8i

2 − 4i
=

(1 + 8i)(2 + 4i)

20
=

−30 + 20i

20
=

−3

2
+ i

If we take γ = −1 + i then ρ = −1 + 2i , with norm 5.

If we take γ = −2 + i then ρ = 1 − 2i , also with norm 5.
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Theorem

Let α,β ∈ Z[i ]. For γ ∈ Z[i ], the following are equivalent:

1 γ|α, γ|β ( so γ is a common divisor of α and β ) and if ρ|α, ρ|β
then ρ|γ

2 γ|α, γ|β and if ρ|α, ρ|β then N(ρ) ≤ N(γ)

3 γ = uα+ vβ for some u, v ∈ Z[i ], and if ρ = f α+ gβ for some

f , g ∈ Z[i ] then γ|ρ
4 γ = uα+ vβ for some u, v ∈ Z[i ], and if ρ = f α+ gβ for some

f , g ∈ Z[i ] then N(ρ) ≤ N(γ)

Proof.

Same as for the integers, with | · | replaced by N(·).

Definition

In this case, we say that γ is a greatest common divisor of α and β.
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Lemma

Any two gcd’s of α,β are associate.

Proof.

Obvious.

Definition

α,β ∈ Z[i ] are relatively prime if gcd(α,β) = 1 (or a unit); equivalently, iff

uα+ vβ = 1

is solvable in Z[i ].
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Lemma

If α = γβ+ ρ with N(ρ) < N(β), then gcd(α,β) = gcd(β, ρ)

Theorem (Euclidean algorithm)

Iterate the above, then you’ll get a greatest common divisor. Collect

terms, and you’ll get a Bezout expression.

Note that this works even though quotients and remainders are not unique.
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Example

11 + 3i = (1 − i)(1 + 8i) + 2 − 4i

1 + 8i = (−1 + i)(2 − 4i) + 1 − 2i

2 − 4i = 2(1 − 2i) + 0

so

gcd(11 + 3i , 1 + 8i) = 1 − 2i = (1)(1 + 8i) + (1 − i)(2 − 4i) =

= (1)(1 + 8i) + (1 − i)((11 + 3i) + (−1 + i)(1 + 8i)) =

= (1 − i)(11 + 3i) + (1 + (1 − i)(−1 + i))(1 + 8i)
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Lemma

If α,β, γ ∈ Z[i ], α|βγ, gcd(α,β) = 1, then α|γ.

Proof.

Since α|βγ we can write βγ = αw for some w ∈ Z[i ]. Furthermore, since

gcd(α,β) = 1,

1 = uα+ vβ,

so

γ = γuα+ γvβ = αγu + αwv = α(uγ+ wv)
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Lemma

If α ∈ Z[i ] is irreducible, then it is prime.

Proof.

Suppose that α|ab. Since α is irreducible, gcd(α, a) = 1, so by the

previous lemma α|b.

Lemma

If α ∈ Z[i ] is prime, then it is irreducible.

Proof.

Suppose, towards a contradiction, that α = ab with N(a),N(b) < N(α).

Then α|ab but α 6 |a, α 6 |b.
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Theorem

Every α ∈ Z[i ] can be written as a (finite) product of (Gaussian) primes.

Proof.

If α is irreducible, it is prime, and we are done.

If α = ab with N(a),N(b) < N(α), then by induction we can write a, b as

products of prime. Combine.
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Theorem (Unique factorization)

If 0 6= α ∈ Z[i ], then

α = π1 · · ·πs

where the πi ’s are Gaussian primes. If furthermore

α = q1 · · · qt

is another factorization of α into Gaussian primes, then t = s, and there is

some permutation σ ∈ Ss such that qj = εjπσ(j) for 1 ≤ j ≤ s, with

N(εj) = 1.

Proof.

Similar to the integers.
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Example

Note that a (rational) prime p need not be a Gaussian prime. For instance,

5 = (1 + 2i)(1 − 2i) = (2 − i)(2 + i)

Here, (1 + 2i) and 2 − i are associate, as is 1 − 2i and 2 + i , so the two

factorizations are (essentially) the same.
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Example

Let α = 3 + 4i . Then N(α) = 9 + 16 = 25 = 52. Thus, either α is a

prime, or α = uv with N(u) = N(v) = 5.

What can have norm 5? By exhaustive search, we find

1 + 2i , 1 − 2i ,−1 + 2i ,−1 − 2i , 2 + i , 2 − i ,−2 + i ,−2 − i

and that

3 + 4i = −(1 − 2i)2
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Theorem

• Any α ∈ Z[i ] with even norm is divisible by 1 + i
• 2 is not a Gaussian prime

Proof.

• Suppose that N(a + ib) = (a + ib)(a − ib) = a2 + b2 = 2c . Since

(1 + i)(1 − i) = 2, we have

(a + ib)(a − ib) = (1 + i)(1 − i)c = (1 + i)2ic

Since N(1 + i) = 2, 1 + i is a Gaussian prime. By unique factorization,

1 + i divides a + ib or a − ib.

But if 1 + i divides a − ib then 1 − i divides a + ib, and 1 + i is

associate to 1 − i .
• 2 = (1 + i)(1 − i).
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Lemma

Let π be a Gaussian prime. Then π|p for some unique rational prime p.

Proof.

Put N(π) = ππ = n, and factor into rational primes, n = p1 · · · pr . Then

π|p1p2 · · · pr =⇒ π|pj some pj

But πα ∈ Z[i ] iff α = πc , c ∈ Z; if ππc = p is prime, then c = ±1.
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Theorem

A rational prime p factors in Z[i ] iff it is a sum of two squares.

Proof.

• Suppose p = αβ ∈ Z[i ], α,β non-units. Then

N(p) = p2 = N(αβ) = N(α)N(β). Hence N(α) = N(β) = p. Write

α = a + ib, then p = N(a + ib) = a2 + b2, so p is a sum of two

squares.

• Suppose p = a2 + b2, a, b ∈ Z. Put α = a + ib. Then

p = (a + ib)(a − ib) = αα

is a non-trivial factorization of p.
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Corollary

Any rational prime p ≡ 3 mod 4 is a Gaussian prime.

Proof.

Recall that such a rational prime can not be written as the sum of two

squares.
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Corollary

A rational prime p ≡ 1 mod 4 has exactly two non-associate Gaussian

prime factors in Z[i ].

Proof.

We know that

p = a2 + b2 = (a + ib)(a − ib)

where a + ib and a − ib have prime norm, and hence are Gaussian primes.

We claim that they are not associate.

1 If a + ib = 1(a − ib) then b = 0, hence p = a2, contradicting p

rational prime.

2 If a + ib = −(a − ib) then a = 0.

3 If a + ib = i(a − ib) = b + ia then a = b, hence p = a2 + b2 = 2a2, a

contradiction.

4 If a + ib = −i(a − ib) = −b − ia then a = −b so p = a2 + b2 = 2b2, a

contradiction.
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Corollary

Let p be a rational prime.

• If p = 2 then p = 2 = −(1 + i)2

• If p ≡ 1 mod 4 then p = ππ, where π and π are not associate.

• If p ≡ 3 mod 4 then p is (also) a Gaussian prime.
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Theorem

Every Gaussian prime α is associate to either

1 1 + i

2 π or π, where N(π) = p is a rational prime, p ≡ 1 mod 4,

3 p, where p is a rational prime, p ≡ 3 mod 4.

Proof.

• Every Gaussian prime α is a factor of some rational prime p

• Either p = 2, p ≡ 1 mod 4, or p ≡ 3 mod 4

• We now know how these rational primes factor in Z[i ]
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Theorem

If a rational prime p is a sum of two squares, say p = a2 + b2, then it is so

expressible in an essentially unique way: a2 and b2 are uniquely

determined (up to ordering).

Proof.

• p = a2 + b2 = (a + ib)(a − ib)

• N(a + ib) = N(a − ib) = p, so a + ib, a − ib are Gaussian primes

• Suppose that p = c2 + d2 = (c + id)(c − id).

• By unique factorization, a + ib = u(c + id), u unit, or

a + ib = u(c − id).

• In the first case, if u = 1, then c = −a and d = −b, so c2 = a2 and

d2 = b2
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Theorem

Let the positive integer n have prime factorization

n = 2m
s∏

j=1

p
ej
j

t∏
k=1

qfk
k

where the pj ’s are primes ≡ 1 mod 4, the qk ’s are primes ≡ 3 mod 4,

and all fk ’s are even.

Then the number of ways of writing n as a sum of two squares, counting

signs and order, is

4
∏
j

(ej + 1)
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Proof.

• Count the ways to factor n = u2 + v2 = (u + iv)(u − iv) in Z[i ]
• 2m = im(1 − i)2m

• pj = (aj + ibj)(aj − ibj), product non-associate Gaussian primes

• So n = ε(1 − i)2m
∏s

j=1(aj + ibj)(aj − ibj)
∏t

k=1 qfk
k

• The factor u + iv is, by unique factorization of the form

ε0(1 − i)w
∏s

j=1(aj + ibj)
gj (aj − ibj)

hj
∏t

k=1 `k with 0 ≤ w ≤ 2m,

0 ≤ gj ≤ ej , 0 ≤ hj ≤ ej , 0 ≤ `k ≤ fk

• u − iv = u + iv = ε0(1 − i)w
∏s

j=1(aj − ibj)
gj (aj + ibj)

hj
∏t

k=1 `k

• n = (u + iv)(u − iv) = 2w
∏s

j=1 p
gj+hj
j

∏t
k=1 q2`k

k

• So w = m, gj + hj = ej , 2`k = fk , ε0 unit

• So ej + 1 choices for gj , 4 choices for ε0.
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Example

n = 52 = (2 + i)2(2 − i)2

Possible factors u + iv are

(2+i)2 = 3+4i , i(2+i)2 = −4+3i , i2(2+i)2 = −3−4i , i3(2+i)2 = 4−3i ,

(2 + i)(2 − i) = 5

(2 − i)2 = 3 − 4i

and 6 more, yielding n = (±5)2 + 02 = (±3)2 + (±4)2 = (±4)2 + (±3)2.
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Example

13 = (2 + 3i)(2 − 3i),

with factors

2 + 3i ,−3 + 2i ,−2 − 3i , 3 − 2i , 2 − 3i , 3 + 2i ,−2 + 3i ,−3 − 2i

Hence

52 ∗ 13 = (2 + i)2(2 − i)2(2 + 3i)(2 − 3i),

one possible factor is

(2 + i)2(2 + 3i) = (3 + 4i)(2 + 3i) = −6 + 17i

so

52 ∗ 13 = (−6)2 + 172.
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Theorem

Let 4F (n) denote the number of ways of writing n as a sum of squares.

Then F is a multiplicative function, with values on prime powers given by

• F (2m) = 1,

• if q ≡ 3 mod 4 then F (q2f ) = 1 and F (q2f+1) = 0

• if p ≡ 1 mod 4 then F (pe) = e + 1
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Recall:

Definition

• Solutions (in integers) to a2 + b2 = c2 are called Ptyhagorean triples

(PT)

• If gcd(a, b, c) = 1 then primitive Pythagoreant triple (PPT)

Lemma

• If (a, b, c) PPT, then gcd(a, b) = 1, a, b different parity, c odd

• Assume a odd, b even, then given by parametrization

a = u2 − v2, b = 2uv , c = u2 + v2

with u > v > 0, gcd(u, v) = 1, u, v different parity.
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Let us prove this once again, now using Gaussian integers!

Sketch of proof

• c2 = a2 + b2 = (a + ib)(a − ib)

• First show gcd(a + ib, a − ib) = 1 ∈ Z[i ]. Let δ be common divisor.

• δ divides a + ib, a − ib, hence 2a and 2ib, hence 2b.

• δ is relatively prime to 2 = −i(1 + i)2 since

1 1 + i prime

2 1 + i divides δ iff N(δ) is even

3 δ2|c2 so N(δ)2|c4; however, c is odd.

4 So gcd(δ, 1 + i) = 1, hence gcd(δ, 2) = 1

• So δ|2a =⇒ δ|a, and δ|2b =⇒ δ|b.

• Since gcd(a, b) = 1 ∈ Z, by Bezout, 1 = ra + sb, thus by Bezout in

Z[i ], gcd(a, b) = 1 ∈ Z[i ].
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Proof (contd)

• Hence δ = 1, and gcd(a + ib, a − ib) = 1.

• c2 = a2 + b2 = (a + ib)(a − ib), with gcd(a + ib, a − ib) = 1. By

unique factorization, a + ib = ε(u + iv)2, with ε unit.

• Also true that a − ib is a square, up to a unit.

• −1 = i2 can be absorbed, so can take ε ∈ {1, i }.

• ε = 1 gives a + ib = u2 − v2 + 2uvi , ε = i gives

a + ib = i(u2 − v2) + 2uv .

• Convention: a odd, so take first case.

• Easy check: u > v , different parity, relatively prime.
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Let us study a similar Diophantine equation.

Theorem

The integer solutions to

a2 + b2 = c3

with gcd(a, b) = 1 are parametrized by

a = m3 − 3mn2, b = 3m2n − n3, c = m2 + n2

with gcd(m, n) = 1, m, n different parity.

Proof.

Sketch of proof

• c3 = a2 + b2 = (a + ib)(a − ib)
• a + ib is a perfect cube, so

a+ib = (m+in)3 = m3+3m2ni−3mn2−in3 = m3−3mn2+(3m2n−n3)i
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• Yet another Diophantine (Rosen 14.3.8):

y3 = x2 + 1 = (x + i)(x − i)

• x + i , x − i relatively prime

•
x + i = (r + si)3 = r3 − 3rs2 + i(3r2s − s3)

• x = r(r2 − 3s2), 1 = s(3r2 − s2)

• So s = 1 or s = −1

• If s = 1 then 1 = 3r2 − 1, 3r2 = 2, impossible

• If s = −1 then 1 = −3r2 + 1, 3r2 = 0, r = 0, x = 0, y = 1
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Definition

α,β, γ ∈ Z[i ], γ 6= 0.

α ≡ β mod γ

if and only if

γ|(α− β)

Example

(3 + 4i)(3 − 4i) = 25

so (3 + 4i)|25, and

7 + 2i ≡ 32 + 2i mod 3 + 4i
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Lemma

• For fixed γ, equivalence relation on Z[i ]
• Congruence, i.e. if α1 ≡ α2 mod γ, β1 ≡ β2 mod γ, then

α1 + β1 ≡ α2 + β2 mod γ, and α1β1 ≡ α2β2 mod γ.

Example

2 + 5i ≡ i mod 1 + 2i

so

(2 + 5i)16 ≡ i16 ≡ 1 mod 1 + 2i
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Lemma

If a, b, n ∈ Z then a|b in Z[i ] iff a|b in Z.

Similarly, a ≡ b mod n in Z[i ] iff a ≡ b mod n in Z.
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Definition
Z[i ]
(γ) is the set of congruence classes [α] mod γ, made into a ring by the

well-defined operations

[α] + [β] = [α+ β]

[α][β] = [αβ]

Lemma

• Z[i ]
(γ) is a field if and only if γ is a Gaussian prime

• Z[i ]
(γ) is finite
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Example

γ = (1 + i)(2 + 3i) = −1 + 5i is composite, so Z[i ]/(γ) has zero-divisors,

and is not a field. That does not mean that all elements are non-invertible:

gcd(5
√
−1 − 1, 2

√
−1 + 3) = −1

and

1 = (−
√
−1 − 2)(5

√
−1 − 1) + (3

√
−1)(2

√
−1 + 3)

so

(2
√
−1 + 3)(3

√
−1) ≡ 1 mod 5

√
−1 − 1
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CRT

Theorem

If u, v , α, β ∈ Z[i ], with α,β relatively prime, then the system of

congruences

x ≡ u mod α

x ≡ v mod β

is solvable, and soln unique mod αβ.
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Example

x ≡ 7
√
−1 + 5 mod 17

√
−1 + 13

x ≡ 13
√
−1 + 11 mod 23

√
−1 + 19

has solution x = 126
√
−1 + 624.
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Theorem

Let α ∈ Z[i ] \ {0}
1 The congruence class [0] forms a lattice in Z[i ], the class [β] is the

translate β+ [0]

2 Let H = { sα+ tiα 0 ≤ s, t ≤ 1 } ∩ Z[i ]. Then H constitute a

complete set of residues for Z[i ] mod α. Removing lattice points on

the edges s = 1 and t = 1 that are congruent mod α to other lattice

points in H we get a reduced set of residues

3 Z[i ]/(α) has N(α) elements
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Example

α = 2 + 3i , multiples of α in red:

-10 -5 5 10

-10

-5

5

10
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Example

We zoom in on the fundamental region:

-3 -2 -1 1 2

1

2

3

4

5

N(2 + 3i) = 4 + 9 = 13 and there are 12 interior lattice points, none on

the edges, the 4 vertices all congruent, we pick 0.
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Theorem

If π, α ∈ Z[i ], with π a Gaussian prime, α 6= 0, then

αN(π)−1 ≡ 1 mod π

Proof.

Similar to the proof for the integers: choose a complete, reduced set of

residues for Z[i ] modulo π, multiply the non-zero classes together. Also

scale this set by α and then multiply together. Equate, and pull out the

factor αN(π)−1.
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Example

Take α = 1 + 2i , π = 3 + 4i . Then N(π) = 25, and gcd(α, π) = 1, so

(1 + 2i)24 ≡ 1 ≡ 1 + i(3 + 4i) ≡ −3 + 3i mod 3 + 4i

-4 -3 -2 -1 1 2 3

1

2

3

4

5

6

7
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Definition

For α ∈ Z[i ] \ {0}, φZ[i ](α) =

∣∣∣∣(Z[i ]
(α)

)×
∣∣∣∣

Lemma

φZ[i ](·) is multiplicative; it’s value on powers of Gaussian primes is

φZ[i ](π
k) = N(π)k−1 (N(π) − 1)
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Theorem

For α,β ∈ Z[i ] \ {0}, with gcd(α,β) = 1,

βφZ[i](α) ≡ 1 mod α

Example

φ(5) = 4, but

φZ[i ](5) = φZ[i ]((1 + 2i)(1 − 2i)) = (N(1 + 2i) − 1)(N(1 − 2i) − 1) = 16.

Hence

(2 + 3i)16 ≡ 1 mod 5,

so

(2 + 3i)33 ≡ 2 + 3i mod 5,
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