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Diophantine eqn: want only integer solns

Theorem

Let a, b, c ∈ Z. Put d = gcd(a, b). The equation

ax + by = c , x , y ∈ Z (DE)

is solvable iff d |c.

Proof.

Necessity: if soln x , y exists, then d |LHS , so d |c.

Sufficiency: if d |c , then (DE) equivalent to

a

d
x +

b

d
x =

c

d
(DE’)

with gcd( ad ,
b
d ) = 1. So, can assume d = 1.
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Theorem

Let a, b, c ∈ Z, with gcd(a, b) = 1. The equation

ax + by = c , x , y ∈ Z (DE1)

is solvable.

Proof.

Bezout: 1 = ax ′ + by ′, so c = ax ′c + by ′c. Put x = xp = x ′c , y = yp = y ′c .



Number
Theory,

Lecture 2

Jan Snellman

Linear
Diophantine
equations

One eqn, two
unknowns

One eqn, many
unknowns

Congruences

Definition

Examples

Equivalence relation

Zn

Linear equations in
Zn

Chinese
Remainder
Thm

Proof

Example

All solutions

• If (x1, y2) and (x2, y2) both solutions to (DE1) then (x1 − x2, y1 − y2) soln to

ax + by = 0 (DEH)

• (x , y) = (bn,−an), n ∈ Z, are solns to (DEH)

• In fact all solutions: ax = −by so b|x , thus x = bn. Hence abn = −by , so

−an = y .

• So all solutions to (DE1) given by

(x , y) = (xp, yp) + (xh, yh) = (xp, yp) + n(b,−a)
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• 4x + 6y = 20
• gcd(4, 6) = 2
• 2x + 3y = 10
• gcd(2, 3) = 1 = 2 ∗ (−1) + 3 ∗ 1
• 2 ∗ (−10) + 3 ∗ 10 = 10
• (xp, yp) = (−10, 10) particular

solution

• All solutions to 2x + 3y = 0 are

(xh, yh) = n(3,−2), n ∈ Z
• All solutions to original Diophantine

is (x , y) = (xh, yh) + (xp, yp) =

(−10 + 3n, 10 − 2n)
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Generalization

Theorem

The linear Diophantine eqn

a1x1 + a2x2 + · · ·+ anxn = c

is solvable when gcd(ai , aj) = 1 for i 6= j .

(Stronger thm possible)

Proof.

Necessity: obvious. Sufficiency: study

a1x + 1 ∗ y = c , gcd(a1, y) = 1

Solvable with x , y integers. Now study

a2x2 + · · ·+ anxn = y ,

solvable by induction.
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2x + 3y + 5z = 1

• Solve 2x + 1u = 1

• (x , u) = (0, 1) + n(1,−2).

• Solve 3y + 5z = u = 1 − 2n.

• (y , z) = (1 − 2n)(2,−1) + m(5,−3).

• Combine:

(x , y , z) = (0, 2,−1) + n(1, 4,−2) + m(0, 5,−3)
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Congruent modulo n

P 3 n > 1.

Definition

For a, b ∈ Z, we say that a is congruent to b modulo n,

a ≡ b mod n

iff n|(a − b).

Lemma

• a ≡ a mod n,

• a ≡ b mod n ⇐⇒ b ≡ a mod n,

• a ≡ b mod n ∧ b ≡ c mod n =⇒ a ≡ c mod n.
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• Odd numbers ar congruent to each other modulo 2

• 134632 ≡ 5645234532 mod 100

• 4 ≡ −1 mod 5,

• 4 6≡ 1 mod 5.
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Definition

A relation ∼ on X is an equivalence relation if for all x , y , z ∈ X ,

• Reflexive: x ∼ x ,

• Symmetric: x ∼ y ⇐⇒ y ∼ x ,

• Transitive: x ∼ y ∧ y ∼ z =⇒ x ∼ z .

• For x ∈ X , [x ] = [x ]∼ = { y ∈ X x ∼ y } is the equivalence class containing x ,

and x is a representative of the class

• The classes partition X :

X = ∪x∈X [x ], union disjoint

In other words, every element belongs to a unique eq. class.

• x ∼ y ⇐⇒ x ∈ [y ] ⇐⇒ [x ] = [y ]
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• We collect the classes in a bag:

X/ ∼= { [x ] x ∈ X }

• Picture!

• Canonical surjection:

π : X → X/ ∼

π(y) = [y ]

• Section:

s : X/ ∼→ X

such that π(s(A)) = A.

• Transversal T : choice of exactly one representative from each class

• Normal form: w = s ◦ π satisfies n(y) ∼ y , n(n(y)) = n(y)

• Concepts above related. Picture!
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• Now fix positive integer n > 1, and let ∼ be the equivalence relation

x ∼ y ⇐⇒ x ≡ y mod n

• So X = Z
• It is partitioned into n classes, why?

•
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• If

x = kn + r , 0 ≤ r < n

x ′ = k ′n + r ′, 0 ≤ r ′ < n

then x ≡ x ′ mod n if and only if r = r ′.

• So a transversal is T = {0, 1, 2, . . . , n − 1}

• Z = [0] ∪ [1] ∪ · · · ∪ [n − 1],

• [a] = nZ+ a,

• One section: s([a]) = b with b ≡ a mod n and 0 ≤ b < n, i.e., b ∈ T .

• Normal form: kn + r 7→ r

• Zn = Z/(nZ) = {[0]n, [1]n, . . . , [n − 1]n}

• Can add congruence classes by adding representatives!
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Lemma

Suppose that

a1 ≡ a2 mod n

b1 ≡ b2 mod n

Then

a1 + b1 ≡ a2 + b2 mod n

a1b1 ≡ a2b2 mod n

Proof.

n|(a1 − a2), n|(b1 − b2). Since (a1 − a2) + (b1 − b2) = (a1 + b1) − (a2 + b2),

n|((a1 + b1) − (a2 + b2)).

Furthermore,

a1b1 − a2b2 = a1b1 + a2b1 − a2b1 − a2b2

= (a1 − a2)b1 − a2(b1 − b2)
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Definition

We add and multiply congruence classes in Zn by

[a]n + [b]n = [a + b]n

[a]n[b]n = [ab]n

(Zn,+, [0], ∗, [1]) is unitary, commutative ring:

[a] + [0] = [a]

[a] + [−a] = [0]

[a] + [b] = [b + a]

([a] + [b]) + [c ] = [a] + ([b] + [c ])

[a] ∗ [1] = [a]

[a] ∗ [b] = [b] ∗ [a]
([a] ∗ [b]) ∗ [c ] = [a] ∗ ([b] ∗ [c ])
[a] ∗ ([b] + [c ]) = ([a] ∗ [b]) + ([a] ∗ [c ])



Number
Theory,

Lecture 2

Jan Snellman

Linear
Diophantine
equations

One eqn, two
unknowns

One eqn, many
unknowns

Congruences

Definition

Examples

Equivalence relation

Zn

Linear equations in
Zn

Chinese
Remainder
Thm

Proof

Example

Example

Addition and multiplication modulo 4:

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

* 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Addition and multiplication modulo 5:

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 0 1

2 2 3 0 1 2

3 3 0 1 2 3

4 4 1 2 3 4

* 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1
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Lemma

If ac ≡ bc mod n and gcd(c , n) = 1, then a ≡ b mod n.

Proof.

n|(ac − bc), so n|c(a − b), so n|(a − b) (previous lemma).

Example

0 ∗ 2 ≡ 2 ∗ 2 mod 4,

yet

0 6≡ 2 mod 4
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Lemma

If T = {t1, . . . , tn} transversal (mod n) and gcd(a, n) = 1, then aT = {at1, . . . , atn}

also transversal.

Proof.

Need only show ati ≡ atj mod n implies i = j . But n|(ati − atj) gives n|(ti − tj),

which gives i = j , since T transversal.
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Theorem

If gcd(a, n) = 1 then

ax ≡ b mod n

solvable; soln unique modulo n.

Proof.

Uniqueness: if ax ≡ ax ′ ≡ b mod n then ax − ax ′ ≡ 0 mod n, so x ≡ x ′ mod n.

Existence: T = {t1, . . . , tn} transversal. aT = {at1, . . . , atn} also transversal, so

some atj ≡ 1 mod n.

Example

Solve 3x ≡ 2 mod 5. T = {0, 1, 2, 3, 4}, 3T = {0, 3, 6, 9, 12} ≡ {0, 3, 1, 4, 2}

mod 5. So 3 ∗ 4 ≡ 2 mod 5.
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Theorem

Let d = gcd(a, n). The eqn

ax ≡ b mod n

is solvable iff d |b; the soln then unique modulo n/d.

Proof.

Since d = gcd(a, n) then d |n and d |a.

Necessity: if soln exists then n|(ax − b), hence d |b.

Sufficiency: Suppose d |b.

n|(ax − b) ⇐⇒ n

d
|( a

d
x −

b

d
) ⇐⇒ a

d
x ≡ b

d
mod

n

d

Since gcd( ad ,
b
d ) = 1, we apply previous lemma: soln exists, unique modulo n

d .
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4x ≡ 2 mod 6

2x ≡ 1 mod 3

2x − 1 ≡ 0 mod 3

• Diophantine eqn, 2x − 1 = 3y

• soln for instance x = −1,y = −1

• Hence x ≡ −1 ≡ 2 mod 3 is the soln, unique mod 3
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Units in Zn

Definition

R commutative ring with one. An element r ∈ R is a unit if exists s ∈ R with

rs = 1. R is a field if every element in R \ {0} is a unit.

Theorem

• [a]n ∈ Zn is a unit iff gcd(a, n) = 1.

• Zn is a field iff n is prime.

Proof.

First part already proved. If n prime, then gcd(a, n) = 1 for n 6 |a. If n = uv is

composite, then gcd(u, n) = u > 1.
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CRT If gcd(m, n) = 1, then the system of eqns

x ≡ a mod m

x ≡ b mod n
(CRT)

is solvable; the soln unique modulo mn.

Proof

Uniqueness: if

x ≡ x ′ ≡ a mod m

x ≡ x ′ ≡ b mod n

then

x − x ′ ≡ 0 mod m

x − x ′ ≡ 0 mod n

Thus m|(x − x ′), n|(x − x ′), so since gcd(m, n) = 1, mn|(x − x ′).
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Proof.

Existence: we have that x ≡ a mod m, so x = a + rm, r ∈ Z. Thus

x ≡ b mod n

a + rm ≡ b mod n

a + rm = b + sn

rm − sn = b − a

This is a linear Diophantine eqn, solvable since gcd(m, n) = 1.

Alternatively, rm ≡ b − a mod n is solvable (for r) since gcd(m, n) = 1.
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x ≡ 1 mod 2

x ≡ 3 mod 5

x ≡ 5 mod 7

Solve first two eqns:

x = 1 + 2r ≡ 3 mod 2

2r ≡ 2 mod 5

r ≡ 1 mod 5

r = 1 + 5s

x = 1 + 2(1 + 5s) = 3 + 10s

x ≡ 3 mod 10
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Now to solve

x ≡ 3 mod 10

x ≡ 5 mod 7

As before:

x = 3 + 10s ≡ 5 mod 7

10s ≡ 2 mod 7

5s ≡ 1 mod 7

Find mult inverse of 5 modulo 7:

s ≡ 3 mod 7

s = 3 + 7t

x = 3 + 10s = 3 + 10(3 + 7t)

= 33 + 70t

x ≡ 33 mod 70
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