Number
Theory, Lecture 2

Jan Snellman

Linear

Diophantine equations

Number Theory, Lecture 2

Linear Diophantine equations, congruenses

Jan Snellman ${ }^{1}$
${ }^{1}$ Matematiska Institutionen
Linköpings Universitet

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET
(1) Linear Diophantine equations

One eqn, two unknowns One eqn, many unknowns
(2) Congruences Definition Examples

Equivalence relation \mathbb{Z}_{n}
Linear equations in \mathbb{Z}_{n} (3) Chinese Remainder Thm Proof Example

Linear

(1) Linear Diophantine equations

One eqn, two unknowns One eqn, many unknowns
(2) Congruences

Definition
Examples

Equivalence relation
\mathbb{Z}_{n}
Linear equations in \mathbb{Z}_{n}
(3) Chinese Remainder Thm

Proof
Example
(1) Linear Diophantine equations

One eqn, two unknowns One eqn, many unknowns
(2) Congruences

Definition
Examples

Equivalence relation
\mathbb{Z}_{n}
Linear equations in \mathbb{Z}_{n}
(3) Chinese Remainder Thm

Proof
Example

Number

Diophantine eqn: want only integer solns

Theorem

Let $a, b, c \in \mathbb{Z}$. Put $d=\operatorname{gcd}(a, b)$. The equation

$$
\begin{equation*}
a x+b y=c, \quad x, y \in \mathbb{Z} \tag{DE}
\end{equation*}
$$

is solvable iff $d \mid c$.

Proof.

Necessity: if soln x, y exists, then $d \mid L H S$, so $d \mid c$. Sufficiency: if $d \mid c$, then (DE) equivalent to

$$
\begin{equation*}
\frac{a}{d} x+\frac{b}{d} x=\frac{c}{d} \tag{DE'}
\end{equation*}
$$

with $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$. So, can assume $d=1$.

Number
Theory, Lecture 2 Jan Snellman

Linear

Diophantine equations

Theorem

Let $a, b, c \in \mathbb{Z}$, with $\operatorname{gcd}(a, b)=1$. The equation

$$
a x+b y=c, \quad x, y \in \mathbb{Z}
$$

(DE1)
is solvable.

Proof.

Bezout: $1=a x^{\prime}+b y^{\prime}$, so $c=a x^{\prime} c+b y^{\prime} c$. Put $x=x_{p}=x^{\prime} c, y=y_{p}=y^{\prime} c$.

- If $\left(x_{1}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right)$ both solutions to (DE1) then $\left(x_{1}-x_{2}, y_{1}-y_{2}\right)$ soln to

$$
\begin{equation*}
a x+b y=0 \tag{DEH}
\end{equation*}
$$

- $(x, y)=(b n,-a n), n \in \mathbb{Z}$, are solns to (DEH)
- In fact all solutions: $a x=-b y$ so $b \mid x$, thus $x=b n$. Hence $a b n=-b y$, so $-a n=y$.
- So all solutions to (DE1) given by

$$
(x, y)=\left(x_{p}, y_{p}\right)+\left(x_{h}, y_{h}\right)=\left(x_{p}, y_{p}\right)+n(b,-a)
$$

Number
Theory, Lecture 2 Jan Snellman

Linear

Diophantine equations

One eqn, two

 unknowns One eqn, many One eqn,unknowns
Congruences Definition Examples Equivalence relation \mathbb{Z}_{n} Linear equations in

Example

- $4 x+6 y=20$
- $\operatorname{gcd}(4,6)=2$
- $2 x+3 y=10$
- $\operatorname{gcd}(2,3)=1=2 *(-1)+3 * 1$
- $2 *(-10)+3 * 10=10$
- $\left(x_{p}, y_{p}\right)=(-10,10)$ particular solution
- All solutions to $2 x+3 y=0$ are $\left(x_{h}, y_{h}\right)=n(3,-2), n \in \mathbb{Z}$
- All solutions to original Diophantine is $(x, y)=\left(x_{h}, y_{h}\right)+\left(x_{p}, y_{p}\right)=$ $(-10+3 n, 10-2 n)$

Number

Theory,

Lecture 2

Jan Snellman

Linear

Diophantine equations

One eqn, two

 unknowns One eqn, many unknowns
Congruences

Definition Examples Equivalence relation \mathbb{Z}_{n} Linear equations in \mathbb{Z}_{n}

Chinese Remaincer Thim

Proof

 Example

Linear

Diophantine equations

Theorem

The linear Diophantine eqn

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=c
$$

is solvable when $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ for $i \neq j$.
(Stronger thm possible)

Proof.

Necessity: obvious. Sufficiency: study

$$
a_{1} x+1 * y=c, \quad \operatorname{gcd}\left(a_{1}, y\right)=1
$$

Solvable with x, y integers. Now study

$$
a_{2} x_{2}+\cdots+a_{n} x_{n}=y
$$

solvable by induction.

Number
Theory, Lecture 2 Jan Snellman

Example

$$
2 x+3 y+5 z=1
$$

- Solve $2 x+1 u=1$
- $(x, u)=(0,1)+n(1,-2)$.
- Solve $3 y+5 z=u=1-2 n$.
- $(y, z)=(1-2 n)(2,-1)+m(5,-3)$.
- Combine:

$$
(x, y, z)=(0,2,-1)+n(1,4,-2)+m(0,5,-3)
$$

Congruent modulo n

$$
\mathbb{P} \ni n>1
$$

Definition

For $a, b \in \mathbb{Z}$, we say that a is congruent to b modulo n,

$$
a \equiv b \quad \bmod n
$$

iff $n \mid(a-b)$.

Lemma

- $a \equiv a \bmod n$,
- $a \equiv b \bmod n \quad b \equiv a \bmod n$,
- $a \equiv b \bmod n \wedge b \equiv c \bmod n \quad \Longrightarrow \quad a \equiv c \bmod n$.

Number
Theory, Lecture 2

Jan Snellman

Linear

Diophantine equations

Example

- Odd numbers ar congruent to each other modulo 2
- $134632 \equiv 5645234532 \bmod 100$
- $4 \equiv-1 \bmod 5$,
- $4 \not \equiv 1 \bmod 5$.

Number Theory, Lecture 2

Definition

A relation \sim on X is an equivalence relation if for all $x, y, z \in X$,

- Reflexive: $x \sim x$,
- Symmetric: $x \sim y \Longleftrightarrow y \sim x$,
- Transitive: $x \sim y \wedge y \sim z \quad \Longrightarrow \quad x \sim z$.
- For $x \in X,[x]=[x]_{\sim}=\{y \in X \mid x \sim y\}$ is the equivalence class containing x, and x is a representative of the class
- The classes partition X :

$$
X=\cup_{x \in X}[x], \quad \text { union disjoint }
$$

In other words, every element belongs to a unique eq. class.

- $x \sim y$
 $x \in[y]$
\Longleftrightarrow
$[x]=[y]$

Number Theory, Lecture 2

Linear

Diophantine equations

- We collect the classes in a bag:

$$
X / \sim=\{[x] \mid x \in X\}
$$

- Picture!
- Canonical surjection:

$$
\begin{aligned}
& \pi: X \rightarrow X / \sim \\
& \pi(y)=[y]
\end{aligned}
$$

- Section:

$$
s: X / \sim X
$$

such that $\pi(s(A))=A$.

- Transversal T : choice of exactly one representative from each class
- Normal form: $w=s \circ \pi$ satisfies $n(y) \sim y, n(n(y))=n(y)$
- Concepts above related. Picture!

Number
Theory, Lecture 2

Jan Snellman

Linear

Diophantine equations One eqn, two unknowns One eqn, many unknowns

Congruences Definition Examples Equivalence relation \mathbb{Z}_{n} Linear equations in

- Now fix positive integer $n>1$, and let \sim be the equivalence relation

$$
x \sim y \quad \Longleftrightarrow \quad x \equiv y \quad \bmod n
$$

- So $X=\mathbb{Z}$
- It is partitioned into n classes, why?

Number Theory, Lecture 2 Jan Snellman

$$
\begin{array}{r}
x=k n+r, \quad 0 \leq r<n \\
x^{\prime}=k^{\prime} n+r^{\prime}, \quad 0 \leq r^{\prime}<n
\end{array}
$$

then $x \equiv x^{\prime} \bmod n$ if and only if $r=r^{\prime}$.

- So a transversal is $T=\{0,1,2, \ldots, n-1\}$
- $\mathbb{Z}=[0] \cup[1] \cup \cdots \cup[n-1]$,
- $[a]=n \mathbb{Z}+a$,
- One section: $s([a])=b$ with $b \equiv a \bmod n$ and $0 \leq b<n$, i.e., $b \in T$.
- Normal form: $k n+r \mapsto r$
- $\mathbb{Z}_{n}=\mathbb{Z} /(n \mathbb{Z})=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\}$
- Can add congruence classes by adding representatives!

Number
Theory, Lecture 2 Jan Snellman

Linear

Diophantine equations

Lemma

Suppose that

$$
\begin{array}{ll}
a_{1} \equiv a_{2} & \bmod n \\
b_{1} \equiv b_{2} & \bmod n
\end{array}
$$

Then

$$
\begin{aligned}
a_{1}+b_{1} & \equiv a_{2}+b_{2} \quad \bmod n \\
a_{1} b_{1} & \equiv a_{2} b_{2} \quad \bmod n
\end{aligned}
$$

Proof.

$n\left|\left(a_{1}-a_{2}\right), n\right|\left(b_{1}-b_{2}\right)$. Since $\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right)=\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right)$, $n \mid\left(\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right)\right)$.
Furthermore,

$$
\begin{aligned}
a_{1} b_{1}-a_{2} b_{2} & =a_{1} b_{1}+a_{2} b_{1}-a_{2} b_{1}-a_{2} b_{2} \\
& =\left(a_{1}-a_{2}\right) b_{1}-a_{2}\left(b_{1}-b_{2}\right)
\end{aligned}
$$

Definition

We add and multiply congruence classes in \mathbb{Z}_{n} by

$$
\begin{aligned}
{[a]_{n}+[b]_{n} } & =[a+b]_{n} \\
{[a]_{n}[b]_{n} } & =[a b]_{n}
\end{aligned}
$$

$\left(\mathbb{Z}_{n},+,[0], *,[1]\right)$ is unitary, commutative ring:

$$
\begin{aligned}
{[a]+[0] } & =[a] \\
{[a]+[-a] } & =[0] \\
{[a]+[b] } & =[b+a] \\
([a]+[b])+[c] & =[a]+([b]+[c]) \\
{[a] *[1] } & =[a] \\
{[a] *[b] } & =[b] *[a] \\
([a] *[b]) *[c] & =[a] *([b] *[c]) \\
{[a] *([b]+[c]) } & =([a] *[b])+([a] *[c])
\end{aligned}
$$

Congruences

Example

Addition and multiplication modulo 4:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

$*$	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Addition and multiplication modulo 5:

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	0	1
2	2	3	0	1	2
3	3	0	1	2	3
4	4	1	2	3	4

$*$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Number
Theory, Lecture 2 Jan Snellman

Linear

Diophantine equations

Lemma

If $a c \equiv b c \bmod n$ and $\operatorname{gcd}(c, n)=1$, then $a \equiv b \bmod n$.

Proof.

$n \mid(a c-b c)$, so $n \mid c(a-b)$, so $n \mid(a-b)$ (previous lemma).

Example

$$
\text { yet } \begin{array}{r}
0 * 2 \equiv 2 * 2 \bmod 4, \\
0 \not \equiv 2 \bmod 4
\end{array}
$$

Number
Theory, Lecture 2 Jan Snellman

Linear

Diophantine equations

Lemma

If $T=\left\{t_{1}, \ldots, t_{n}\right\}$ transversal $(\bmod n)$ and $\operatorname{gcd}(a, n)=1$, then $a T=\left\{a t_{1}, \ldots, a t_{n}\right\}$ also transversal.

Proof.

Need only show $a t_{i} \equiv a t_{j} \bmod n$ implies $i=j$. But $n \mid\left(a t_{i}-a t_{j}\right)$ gives $n \mid\left(t_{i}-t_{j}\right)$, which gives $i=j$, since T transversal.

Number
Theory, Lecture 2

Jan Snellman

Linear

Diophantine equations

Theorem

If $\operatorname{gcd}(a, n)=1$ then

$$
a x \equiv b \quad \bmod n
$$

solvable; soln unique modulo n.

Proof.

Uniqueness: if $a x \equiv a x^{\prime} \equiv b \bmod n$ then $a x-a x^{\prime} \equiv 0 \bmod n$, so $x \equiv x^{\prime} \bmod n$. Existence: $T=\left\{t_{1}, \ldots, t_{n}\right\}$ transversal. $a T=\left\{a t_{1}, \ldots, a t_{n}\right\}$ also transversal, so some $a t_{j} \equiv 1 \bmod n$.

Example

Solve $3 x \equiv 2 \bmod 5 . T=\{0,1,2,3,4\}, 3 T=\{0,3,6,9,12\} \equiv\{0,3,1,4,2\}$ $\bmod 5$. So $3 * 4 \equiv 2 \bmod 5$.

Number
Theory, Lecture 2

Theorem

Let $d=\operatorname{gcd}(a, n)$. The eqn

$$
a x \equiv b \quad \bmod n
$$

is solvable iff $d \mid b$; the soln then unique modulo n / d.

Proof.

Since $d=\operatorname{gcd}(a, n)$ then $d \mid n$ and $d \mid a$.
Necessity: if soln exists then $n \mid(a x-b)$, hence $d \mid b$.
Sufficiency: Suppose $d \mid b$.

$$
n\left|(a x-b) \quad \Longleftrightarrow \quad \frac{n}{d}\right|\left(\frac{a}{d} x-\frac{b}{d}\right) \quad \Longleftrightarrow \quad \frac{a}{d} x \equiv \frac{b}{d} \bmod \frac{n}{d}
$$

Since $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$, we apply previous lemma: soln exists, unique modulo $\frac{n}{d}$.

Number
Theory, Lecture 2

Jan Snellman

Example

$$
\begin{aligned}
& 4 x \equiv 2 \\
& \bmod 6 \\
& 2 x \equiv 1 \\
& \bmod 3 \\
& 2 x-1 \equiv 0
\end{aligned} \bmod 3
$$

- Diophantine eqn, $2 x-1=3 y$
- soln for instance $x=-1, y=-1$
- Hence $x \equiv-1 \equiv 2 \bmod 3$ is the soln, unique $\bmod 3$

Definition

R commutative ring with one. An element $r \in R$ is a unit if exists $s \in R$ with $r s=1$. R is a field if every element in $R \backslash\{0\}$ is a unit.

Theorem

- $[a]_{n} \in \mathbb{Z}_{n}$ is a unit iff $\operatorname{gcd}(a, n)=1$.
- \mathbb{Z}_{n} is a field iff n is prime.

Proof.

First part already proved. If n prime, then $\operatorname{gcd}(a, n)=1$ for $n X a$. If $n=u v$ is composite, then $\operatorname{gcd}(u, n)=u>1$.

Number
Theory, Lecture 2 Jan Snellman

Linear

Diophantine equations

Theorem

CRT If $\operatorname{gcd}(m, n)=1$, then the system of eqns

$$
\begin{array}{ll}
x \equiv a & \bmod m \\
x \equiv b & \bmod n \tag{CRT}
\end{array}
$$

is solvable; the soln unique modulo mn.

Proof

Uniqueness: if

$$
\begin{array}{ll}
x \equiv x^{\prime} \equiv a & \bmod m \\
x \equiv x^{\prime} \equiv b & \bmod n
\end{array}
$$

then

$$
\begin{array}{ll}
x-x^{\prime} \equiv 0 & \bmod m \\
x-x^{\prime} \equiv 0 & \bmod n
\end{array}
$$

Thus $m\left|\left(x-x^{\prime}\right), n\right|\left(x-x^{\prime}\right)$, so since $\operatorname{gcd}(m, n)=1, m n \mid\left(x-x^{\prime}\right)$.

Number
Theory, Lecture 2

Proof.

Existence: we have that $x \equiv a \bmod m$, so $x=a+r m, r \in \mathbb{Z}$. Thus

$$
\begin{aligned}
x & \equiv b \quad \bmod n \\
a+r m & \equiv b \quad \bmod n \\
a+r m & =b+s n \\
r m-s n & =b-a
\end{aligned}
$$

This is a linear Diophantine eqn, solvable since $\operatorname{gcd}(m, n)=1$. Alternatively, $r m \equiv b-a \bmod n$ is solvable (for r) since $\operatorname{gcd}(m, n)=1$.

Example

$$
x \equiv 1 \quad \bmod 2
$$

$$
x \equiv 3 \bmod 5
$$

$$
x \equiv 5 \bmod 7
$$

Solve first two eqns:

$$
\begin{aligned}
x=1+2 r & \equiv 3 \quad \bmod 2 \\
2 r & \equiv 2 \quad \bmod 5 \\
r & \equiv 1 \quad \bmod 5 \\
r & =1+5 s \\
x=1+2(1+5 s) & =3+10 s \\
x & \equiv 3 \bmod 10
\end{aligned}
$$

Number
Theory, Lecture 2

Jan Snellman

Linear
Diophantine equations One eqn, two unknowns One eqn, many unknowns

Congruences
Definition Examples
Equivalence relation \mathbb{Z}_{n}

Linear equations in Z_{n}

Chinese Remainder Thm

Example

Now to solve

$$
\begin{array}{ll}
x \equiv 3 & \bmod 10 \\
x \equiv 5 & \bmod 7
\end{array}
$$

As before:

$$
\begin{array}{rll}
3+10 s & \equiv 5 & \bmod 7 \\
10 s & \equiv 2 & \bmod 7 \\
5 s & \equiv 1 & \bmod 7
\end{array}
$$

Find mult inverse of 5 modulo 7 :

$$
\begin{aligned}
s & \equiv 3 \bmod 7 \\
s & =3+7 t \\
x=3+10 s & =3+10(3+7 t) \\
& =33+70 t \\
x & \equiv 33 \bmod 70
\end{aligned}
$$

Number
Theory, Lecture 2 Jan Snellman

Linear

Diophantine equations One eqn, two unknowns One eqn, many unknowns

Congruences Definition Examples Equivalence relation \mathbb{Z}_{n}
Linear equations in Z_{n}

Chinese Remainder Thm Proof Example

Example
Now to solve

$$
\begin{array}{ll}
x \equiv 3 & \bmod 10 \\
x \equiv 5 & \bmod 7
\end{array}
$$

As before:

$$
\begin{array}{rll}
x=3+10 s & \equiv 5 & \bmod 7 \\
10 s & \equiv 2 & \bmod 7 \\
5 s & \equiv 1 & \bmod 7
\end{array}
$$

Find mult inverse of 5 modulo 7 :

$$
\begin{aligned}
s & \equiv 3 \bmod 7 \\
s & =3+7 t \\
x=3+10 s & =3+10(3+7 t) \\
& =33+70 t \\
x & \equiv 33 \bmod 70
\end{aligned}
$$

Number

Theory, Lecture 2 Jan Snellman

Linear

Diophantine equations unknowns

Congruences Definition Examples Equivalence relation \mathbb{Z}_{n} Linear equations in $\frac{\text { Line }}{\mathrm{Z}_{n}}$

Example
Now to solve

$$
\begin{array}{ll}
x \equiv 3 & \bmod 10 \\
x \equiv 5 & \bmod 7
\end{array}
$$

As before:

$$
\begin{array}{cll}
x=3+10 s & \equiv 5 & \bmod 7 \\
10 s & \equiv 2 & \bmod 7 \\
5 s & \equiv 1 & \bmod 7
\end{array}
$$

Find mult inverse of 5 modulo 7 :

$$
\begin{aligned}
s & \equiv 3 \bmod 7 \\
s & =3+7 t \\
x=3+10 s & =3+10(3+7 t) \\
& =33+70 t \\
x & \equiv 33 \bmod 70
\end{aligned}
$$

