Number
Theory, Lecture 3

Jan Snellman

Arithmetical functions Definition Some common arithmetical functions Dirichlet Convolution
Matrix interpretation Order, Norms, Infinite sums

Multiplicative function Definition Euler ϕ

Number Theory, Lecture 3

Arithmetical functions, Dirichlet convolution, Multiplicative functions, Möbius inversion

Jan Snellman ${ }^{1}$
${ }^{1}$ Matematiska Institutionen
Linköpings Universitet

(1) Arithmetical functions

Definition
Some common arithmetical functions
Dirichlet Convolution
Matrix interpretation
Order, Norms, Infinite sums
(2) Multiplicative function

Definition
Euler ϕ
(3) Möbius inversion

Multiplicativity is preserved by multiplication
Matrix verification
Divisor functions
Euler ϕ again
μ itself

(1) Arithmetical functions

Definition
Some common arithmetical functions
Dirichlet Convolution
Matrix interpretation
Order, Norms, Infinite sums
(2) Multiplicative function

Definition

Euler ϕ
(3) Möbius inversion

Multiplicativity is preserved by multiplication
Matrix verification
Divisor functions
Euler ϕ again
μ itself
(1) Arithmetical functions

Definition
Some common arithmetical functions
Dirichlet Convolution
Matrix interpretation
Order, Norms, Infinite sums
(2) Multiplicative function

Definition
Euler ϕ
(3) Möbius inversion

Multiplicativity is preserved by multiplication
Matrix verification
Divisor functions
Euler ϕ again
μ itself

Number
Theory, Lecture 3 Jan Snellman Arithmetical functions Definition Some common arithmetical functions Dirichlet Convolution Matrix interpretation

Definition

An arithmetical function is a function $f: \mathbb{P} \rightarrow \mathbb{C}$.
We will mostly deal with integer-valued a.f.
Euler ϕ is one:

$$
n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}, \quad q_{i} \text { distinct primes }
$$

Liouville function λ, Möbius function μ :

$$
\begin{aligned}
\omega(n) & =r \\
\Omega(n) & =a_{1}+\cdots+a_{r} \\
\lambda(n) & =(-1)^{\Omega(n)} \\
\mu(n) & = \begin{cases}\lambda(n) & \omega(n)=\Omega(n) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

d number of divisors, σ sum of divisors, and you know Euler ϕ.

$$
\begin{aligned}
d(n) & =\sum_{k \mid n} 1 \\
\sigma(n) & =\sum_{k \mid n} k \\
\phi(n) & =\sum_{\substack{1 \leq k<n \\
\operatorname{gcd}(k, n)=1}} 1
\end{aligned}
$$

p prime. Von Mangoldt function Λ, prime-counting function π, Legendre symbol $\left(\frac{n}{p}\right), p$-valuation v_{p}.

$$
\begin{aligned}
& \Lambda(n)= \begin{cases}\log q & n=q^{k}, q \text { prime } \\
0 & \text { otherwise }\end{cases} \\
& \pi(n)=\sum_{\substack{1 \leq k \leq n \\
k}} 1
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{e}(n)= \begin{cases}1 & n=1 \\
0 & n>1\end{cases} \\
& \mathbf{0}(n)=0 \\
& \mathbf{1}(n)=1 \\
& \mathbf{I}(n)=n \\
& \mathbf{e}_{i}(n)= \begin{cases}1 & n=i \\
0 & n \neq i\end{cases}
\end{aligned}
$$

Number
Theory, Lecture 3 Jan Snellman

Definition

Let f, g be arithmetical functions. Then their Dirichlet convolution is another a.f., defined by

$$
\begin{equation*}
(f * g)(n)=\sum_{\substack{1 \leq a, b \leq n \\ a b=n}} f(a) g(b)=\sum_{\substack{1 \leq k \leq n \\ k \mid n}} f(k) g(n / k)=\sum_{\substack{1 \leq \ell \leq n \\ \ell \mid n}} f(n / \ell) g(\ell) \tag{DC}
\end{equation*}
$$

Example

$$
(f * g)(10)=f(1) g(10)+f(2) g(5)+f(5) g(2)+f(10) g(1)
$$

- $f *(g * h)=(f * g) * h$
- $f * g=g * f$
- There is a unit for this multiplication, $\mathbf{e}(1)=1, \mathbf{e}(n)=0$ for $n>1$
- Not all a.f. are invertible
- We can add: $(f+g)(n)=f(n)+g(n)$
- We can scale: $(c f)(n)=c f(n)$
- $\mathbf{0}(n)=0$ is a zero vector
- A \mathbb{C}-vector space with multiplication; an algebra.
- Let $n \in \mathbb{P}$ and $D(n)=\{1 \leq k \leq n|k| n\}$ be its divisors
- We want to understand a.f. restricted to $D(n)$, in particular their multiplication
- Given a.f. f, form matrix A with rows and columns indexed by elems in $D(n)$, and $A_{i j}=f(j / i)$ if $i \mid j, 0$ otherwise
- Similarly for a.f. g and matrix B
- Then $A B$ is the matrix for $f * g$

Number
Theory, Lecture 3

Jan Snellman

- $n=12, D(n)$ as follows
- $f=1$

- $A=$??
- $A * A=? ?$
- $F(n)=(\mathbf{1} * f)(n)=\sum_{k \mid n} f(k)$
- The summation of f
- Sometimes F is known and we want to recover f

Arithmetical functions Definition Some common arithmetical functions
Dirichlet Convolution Matrix interpretation

$$
\begin{aligned}
& F(1)=f(1) \\
& F(2)=f(1)+f(2) \\
& F(3)=f(1)+f(3) \\
& F(4)=f(1)+f(2)+f(4)
\end{aligned}
$$

Jan Snellman

Arithmetical functions Definition Some common arithmetical functions
Dirichlet Convolution Matrix interpretation

Theorem

f has inverse $g=f^{-1}$ iff $f(1) \neq 0$

Proof.

Want $f * g=e$, so $(f * g)(m)=1$ if $m=1,0$ otherwise. Gives

$$
\begin{aligned}
1 & =(f * g)(1)=f(1) g(1) \\
0 & =(f * g)(2)=f(1) g(2)+f(2) g(1) \\
0 & =(f * g)(3)=f(1) g(3)+f(3) g(1) \\
0 & =(f * g)(4)=f(1) g(4)+f(2) g(2)+f(4) g(1) \\
0 & =(f * g)(5)=f(1) g(5)+f(5) g(1) \\
& \vdots \\
0 & =(f * g)(n)=f(1) g(n)+\sum_{\substack{k \mid n \\
1<k \leq n}} f(k) g(n / k)
\end{aligned}
$$

so, by induction, we can solve for $g(n)$.

Definition

If $f \neq \mathbf{0}$, then the order of f is

$$
\operatorname{ord}(f)=\min \{n \mid f(n) \neq 0\}
$$

and the norm

$$
\|f\|=2^{-\operatorname{ord}(f)}
$$

Lemma

- $f=\sum_{n} f(n) e_{n}$, i.e., the partial sums of this sum converge to f
- if $f(1)=0$ then $e+f$ is invertible, with inverse given by convergent geometric series:

$$
\frac{e}{e+f}=e-f+f * f-f * f * f+\cdots
$$

Number
Theory, Lecture 3 Jan Snellman

Arithmetical functions Definition Some common arithmetical functions Dirichlet Convolution Matrix interpretation Order, Norms, Infinite sums

Definition

- f is totally multiplicative if $f(n m)=f(n) f(m)$
- f is multiplicative if $f(n m)=f(n) f(m)$ whenever $\operatorname{gcd}(n, m)=1$

Theorem

Let $n=\prod_{j} p_{j}^{a_{j}}$, prime factorization. Then

- If f mult then $f(n)=\prod_{j} f\left(p^{j}\right)$, i.e., f is determined by its values at prime powers
- If f tot mult then $f(n)=\prod_{j} f(p)^{j}$, i.e., f is determined by its values at primes

Proof.

Obvious!

Number
Theory, Lecture 3

Theorem

The Euler ϕ function is multiplicative.

Proof

Let $\operatorname{gcd}(m, n)=1$. Want to prove $\phi(m n)=\phi(m) \phi(n)$, in other words,

$$
\begin{equation*}
\left|\mathbb{Z}_{m n}\right|=\left|\mathbb{Z}_{m}\right|\left|\mathbb{Z}_{n}\right| \tag{1}
\end{equation*}
$$

Claim: following bijection:

$$
\begin{equation*}
\mathbb{Z}_{m n} \ni[a]_{m n} \mapsto\left([a]_{m},[a]_{n}\right) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n} \tag{2}
\end{equation*}
$$

Number Theory, Lecture 3

Proof.

- Well-defined, since $a \equiv a^{\prime} \bmod m n$ implies $a \equiv a^{\prime} \bmod m$ and $a \equiv a^{\prime}$ $\bmod n$.
- Injective, since $a \equiv a^{\prime} \bmod m$ and $a \equiv a^{\prime} \bmod n$ implies $a \equiv a^{\prime} \bmod m n$
- Surjective, by the CRT: take c, d, then exists x with

$$
\begin{array}{ll}
x \equiv c & \bmod m \\
x \equiv d & \bmod n
\end{array}
$$

$$
\text { so }[x]_{m n} \mapsto\left([c]_{m},[d]_{n}\right)
$$

(1) Take p prime
(2) Then all $1 \leq a<p$ relatively prime to p, so $\phi(p)=p-1$
(3) Now consider prime power p^{r}
(4) For $1 \leq a<p^{r}, \operatorname{gcd}\left(a, p^{r}\right)>1$ iff $p \mid n$
(5) Example: $p=3, r=2$:

(6) So $\phi\left(p^{r}\right)=p^{r}-\frac{p^{r}}{p}=p^{r}\left(1-\frac{1}{p}\right)$
(c) For $n=p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$, we have by multiplicativity

$$
\begin{aligned}
\phi\left(p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}\right) & =\phi\left(p_{1}^{r_{1}}\right) \cdots \phi\left(p_{s}^{r_{s}}\right) \\
& =p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}\left(1-1 / p_{1}\right) \cdots\left(1-1 / p_{s}\right) \\
& =n \prod\left(1-1 / p_{j}\right)
\end{aligned}
$$

Number
Theory, Lecture 3 Jan Snellman

Example

- $\phi(15)=\phi(3) \phi(5)=2 * 4=8$
- $\phi(16)=\phi\left(2^{4}\right)=2^{4}-2^{3}=8$
- $\phi(120)=\phi\left(2^{3} * 3 * 5\right)=120(1-1 / 2)(1-1 / 3)(1-1 / 5)=120 *(4 / 15)=32$.

Number
Theory, Lecture 3 Jan Snellman

Arithmetical functions Definition Some common arithmetical functions Dirichlet Convolutit
Matrix interpretation Order, Norms, Infinite sums

Multiplicative function Definition Euler ϕ
$n=p$ gives $\phi(n)=n-1$. This is visible in graph of $\phi(n)$.

Theorem

f, g (non-zero) multiplicative arithmetical functions, $h=f * g$
(D) e is multiplicative
(1) $f(1)=1$, so f is invertible
(\#) h is multiplicative
(1) f^{-1} is multiplicative

Proof

(i-ii) Trivial. (iii): Suppose $\operatorname{gcd}(m, n)=1$. Then

$$
\begin{aligned}
& h(m n)=(f * g)(m n)=\sum_{k \mid m n} f(k) g\left(\frac{m n}{k}\right)=\sum_{\substack{k_{1}\left|m \\
k_{2}\right| n}} f\left(k_{1} k_{2}\right) g\left(\frac{m}{k_{1}} \frac{n}{k_{2}}\right) \\
& \quad=\sum_{\substack{k_{1}\left|m \\
k_{2}\right| n}} f\left(k_{1}\right) f\left(k_{2}\right) g\left(\frac{m}{k_{1}}\right) g\left(\frac{n}{k_{2}}\right)=\sum_{k_{1} \mid m} f\left(k_{1}\right) g\left(\frac{m}{k_{1}}\right) \sum_{k_{2} \mid n} f\left(k_{2}\right) g\left(\frac{n}{k_{2}}\right)=h(m) h(n)
\end{aligned}
$$

Proof.

(iv): The formula for the inverse now becomes

$$
f^{-1}(n)=-\sum_{\substack{d \mid n \\ d<n}} f^{-1}(d) f\left(\frac{n m}{d}\right)
$$

so if $\operatorname{gcd}(n, m)=1$ then

$$
f^{-1}(n m)=-\sum_{\substack{d \mid n \\ d<n}} f^{-1}(d) f\left(\frac{n m}{d}\right)=-\sum_{\substack{d_{1}\left|n \\ d_{2}\right| m \\ d_{1} d_{2}<n}} f^{-1}\left(d_{1} d_{2}\right) f\left(\frac{n m}{d_{1} d_{2}}\right)
$$

Assume, by induction that f^{-1} is multiplicative for arguments $<n m$.

Number
Theory, Lecture 3

Theorem (Möbius inversion)

(1) $1 * \mu=\mathbf{e}$
(2) $F(n)=\sum_{k \mid n} f(k)$ for all n iff $f(n)=\sum_{k \mid n} F(k) \mu(n / k)$ for all n

Proof.

(1): Since the a.f. involved are multiplicative (check!), it suffices to check on prime powers p^{r}. Then $(\mathbf{1} * \mu)\left(p^{0}\right)=1$, and for $r>0$

$$
(\mu * \mathbf{1})\left(p^{r}\right)=\sum_{k=0}^{r} \mu\left(p^{k}\right)=1-1+0+\cdots+0=0
$$

(2): If $F=f * \mathbf{1}$ then $f=f * e=f * \mathbf{1} * \mu=F * \mu$.

Number
Theory, Lecture 3 Jan Snellman

Arithmetical functions Definition Some common arithmetical functions Dirichlet Convolution Matrix interpretation
Order, Norms. Infinite sums

Multiplicative function Definition Euler ϕ

Möbius inversion multiplication Matrix verification Divisor functions Euler ϕ again μ itself

- $n=12, D(n)$ as follows

- $f=1$
- $A=$??
- $g=\mu$
- $C=$??
- $A C=? ?$

Recall

$$
d(n)=\sum_{k \mid n} 1, \quad \sigma(n)=\sum_{k \mid n} k
$$

We can write this as

$$
d=\mathbf{1} * \mathbf{1}, \quad \sigma=\mathbf{1} * \mathbf{I}
$$

from which we conclude that d, σ are multiplicative, and that

$$
\mu * d=\mathbf{1}, \quad \mu * \sigma=\mathbf{I}
$$

or in other words

$$
\sum_{k \mid n} \mu(k) d(n / k)=1, \quad \sum_{k \mid n} \mu(k) \sigma(n / k)=n
$$

Number
Theory, Lecture 3 Jan Snellman

Arithmetical functions Definition Some common arithmetical functions Dirichlet Convolution Matrix interpretation

Definition

$\sigma_{k}(n)=\sum_{d \mid n} d^{k}$. In particular, $\sigma_{0}=d, \sigma_{1}=\sigma$.

Lemma

σ_{k} is multiplicative

Proof.

Suppose $\operatorname{gcd}(m, n)=1$. Then

$$
\sigma_{k}(m n)=\sum_{d \mid m n} d^{k}=\sum_{\substack{d_{1}\left|m \\ d_{2}\right| n}}\left(d_{1} d_{2}\right)^{k}=\sum_{\substack{d_{1}\left|m \\ d_{2}\right| n}} d_{1}^{k} d_{2}^{k}=\sum_{d_{1} \mid m} d_{1}^{k} \sum_{d_{2} \mid n} d_{2}^{k}=\sigma_{k}(m) \sigma_{k}(n)
$$

Number
Theory, Lecture 3 Jan Snellman Arithmetical functions Definition Some common arithmetical functions Dirichlet Convolution Matrix interpretation
Order, Norms. Infinite sums multiplication Matrix verification Divisor functions Euler ϕ again μ itself

Theorem

(1) $\sigma_{k}\left(p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}\right)=\prod_{j=1}^{r} \frac{1-p_{j}^{k\left(a_{j}+1\right)}}{1-p_{j}^{k}}$
(2) $\sum_{d \mid n} d^{k} \mu(n / d)=n^{k}$

Proof.

Try to prove it yourself!

Number
Theory, Lecture 3

Lemma

$1 * \phi=\mathbf{I}$

Proof.

In other words, want prove

$$
\sum_{k \mid n} \phi(k)=n .
$$

Multiplicative, so put $n=p^{r}$.
If $r=0: \mathrm{LHS}=1$, OK.
If $r>0$: LHS $=\sum_{j=0}^{r} \phi\left(p^{j}\right)=1+\sum_{j=1}^{r}\left(p^{j}-p^{j-1}\right)=p^{r}$, since sum telescoping.

Jan Snellman Arithmetical functions Definition Some common arithmetical functions Dirichlet Convolution Matrix interpretation
Order, Norms, Infinite sums

Möbius

 inversion multiplication$$
\phi(1)+\phi(2)+\phi(3)+\phi(6)+\phi(12)=1+1+2+2+2+4=12
$$

Number
Theory, Lecture 3 Jan Snellman

Arithmetical functions Definition Some common arithmetical functions Dirichlet Convolution Matrix interpretation multiplication

Theorem

$$
\phi(n)=\sum_{k \mid n} \mu(k) \frac{n}{k}=\sum_{k \mid n} k \mu\left(\frac{n}{k}\right)
$$

Proof.

Since

$$
\mathbf{1} * \phi=\mathbf{I}
$$

we have that

$$
\phi=\mu * \mathbf{I}=\mathbf{I} * \mu
$$

Definition

An n^{\prime} th root of unity is a complex root to $z^{n}=1$. A primitive n 'th root of unity is not a k 'th root of unity for smaller k.

Lemma

Put $\xi_{n}=\exp \left(\frac{2 \pi}{n} i\right)$. Then the n'th roots of unity are $\xi_{n}^{s}, 1 \leq s \leq n$, and the primitive n 'th roots of unity are $\xi_{n}^{k}, \operatorname{gcd}(k, n)=1$.

Lemma

If $n>1$,

$$
\sum_{s=1}^{n} \xi_{n}^{s}=\frac{\xi_{n}^{n}-1}{\xi_{n}-1}=0
$$

Number
Theory, Lecture 3

Lemma

$$
0=\sum_{s=1}^{n} \xi_{n}^{s}=\sum_{k \mid n} \sum_{\operatorname{gcd}(\ell, k)=1} \xi_{n}^{\ell}
$$

Let $f(d)$ denote the sum of the primitive d'th roots of unity. Then $f(1)=1$, and for $n>1, \sum_{d \mid n} f(d)=0$. So $1 * f=e$, hence $f=\mu$. So the Möbius function is the sum of the primitive roots.

