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An arithmetical function is a function f : P — C.

We will mostly deal with integer-valued a.f.
Euler ¢ is one:
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- | a,
n=py--pl,

Liouville function A, Mobius function u:

w(n)=r
Q(n)=a1+--
An) = (—1)™
~JA(n)
MM—{O

g; distinct primes

. + ar

n)
w(n) =Q(n)
otherwise



d number of divisors, o sum of divisors, and you know Euler ¢.

d(n) :ZI

kln
o(n) =) k
k|n
d(m= > 1
1<k<n

ged(k,n)=1
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p prime. Von Mangoldt function A, prime-counting function 7, Legendre symbol

(g) p-valuation vp.
Definition
Some common
arithmetical
functions
ot Aln) logg n= qk, g prime
n) —
ientation 0 otherwise
Order, Norms,
Infin

mi(n) = g 1
Definition lgk.gn
e k prime
0 n=0 modp

Multiplicativity is n .
e (p) =< +1 n#0 mod p and exists a such that n = a®> mod p
Matrix verification .
Fe—— —1 n#0 mod p and exists no a such that n=a®> mod p

Euler ¢ again

vp(n) = k, p"|n, pk+1 fn



n=1

n>1

often denoted by (

n=i

n#£i
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Let f, g be arithmetical functions. Then their Dirichlet convolution is another a.f.,
defined by

(Fxg)n)= ) fla = Y f(kgln/k)= > f(n/l)g (DC)

1<a,b<n 1<k<n 1<t<n
ab=n k|n {n

(f + g)(10) = f(1)g(10) + f(2)g(5) + f(5)g(2) + £(10)g(1)



fx(gxh)=(fxg)xh
fxg=gxf

There is a unit for this multiplication, ¢(1) =1, e(n) =0forn>1
Not all a.f. are invertible

We can add: (f 4+ g)(n) = f(n)+ g(n)

We can scale: (c¢f)(n) = cf(n)

0(n) =0 is a zero vector

A C-vector space with multiplication; an algebra.
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Matrix interpretation

Let n € P and D(n) ={1 < k < n|k|n} be its divisors

We want to understand a.f. restricted to D(n), in particular their
multiplication

Given a.f. f, form matrix A with rows and columns indexed by elems in D(n),
and A = f(j/i) if i|j, O otherwise

Similarly for a.f. g and matrix B

Then AB is the matrix for f x g
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e n=12, D(n) as follows

<

[ ] f:]_
o A—77
e AxA=177



o Fn) = (L% F)(n) = Ly, FK)
® The summation of f

® Sometimes F is known and we want to recover f

F(1) = f(1)

F(2) = f(1) + f(2)

F(3) = f(1) + f(3)

F(4) = f(1)+f(2) + f(4)



f has inverse g = f~1 iff f(1) #0

1, 0 otherwise. Gives

Want fxg=e,s0 (Fxg)(m)=1ifm

+f(2)g(2) + f(4)g(1)

+f(2)g(1)
+f(3)g(1)
+f(5)g(1)

—_ —~ —~ o~ —

—_ D —

_ = = = =

N

e e = =

NN N )
= —a—

N =

1
0
0
0
0

(fxg)(n) = f(L)gln) + ) F(k)g(n/k)
kln

0=

1<k<n

so, by induction, we can solve for g(n).
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If f # 0, then the order of f is
ord(f) =min{n|f(n) #0}

and the norm
Order, Norms, || fH — Qford(f)

Infinite sums

Lemma

o f=7) _f(n)e, ie., the partial sums of this sum converge to f

e jff(1) =0 then e + f is invertible, with inverse given by convergent geometric
series:

=e—f+Ffxf—Fxfxf+4-.--
e+ f
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® f is totally multiplicative if f(nm) = f(n)f(m)

® f is multiplicative if f(nm) = f(n)f(m) whenever gcd(n,m) =1

Theorem

Let n = H - pj’j , prime factorization. Then

e Iff mult then f(n) =T[; f(p’), i.e., f is determined by its values at prime
powers
e Iff tot mult then f(n) =[], f(p Y, i.e., f is determined by its values at primes
Proof.

Obvious! O



The Euler & function is multiplicative.

Let gcd(m, n) = 1. Want to prove ¢(mn) = b(m)d(n), in other words,
|Zmn| = |Zm| |Zn| (1)
Claim: following bijection:

Zmn 3 [almn — ([a]ma [a]n) € Lim X L (2)
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Proof.

e Well-defined, since a= a’ mod mn implies a= a’ mod m and a = a’

Definition

e mod n.

functions

Diitlet ® |njective, since a= a’ mod m and a= a’ mod n implies a=a’ mod mn

Matrix

® Surjective, by the CRT: take c, d, then exists x with

Infinite sums

xX=c mod m

Definition

el & x=d modn

50 [XImn — ([c]m, [d]))
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Jan Snellman

© Now consider prime power p”
O For 1 <a<p', ged(a,p’) > 1iff p|n

@ Example: p=3, r=2: /\M

@ Sod(p) =p — & =p (1-3)

P
Bt @ For n=p;* --- pZ, we have by multiplicativity

d(pft - pE) = d(pt) - - d(p2)

: ZP?"'P_?(l—1/P1)"'(1—1/Ps)

=n]J(1-1/p)
j
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© $(15) = ¢(3)p(5) =24 =8
e °« p(16) = p(2Y) =2* — 2 =8
ST ° $(120) = p(23%3%5) =120(1—1/2)(1—1/3)(1—1/5) = 120 (4/15) = 32.

function

Definition
Euler &
Méabius
inversion

Multiplicativity is
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n = p gives ®(n) = n— 1. This is visible in graph of ¢(n).
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Theorem

f,g (non-zero) multiplicative arithmetical functions, h=f x g

@ e is multiplicative

@ 7(1) =1, sof is invertible

@ h is multiplicative
® 1 is multiplicative

Proof
(i-ii) Trivial. (iii): Suppose gcd(m,n) = 1. Then

h(mn) = (f x g)(mn) = ) f(k =) flkk)g k1 k2)
k|mn ki|lm
kg\n
=Y flk)f =) flklg Z flko)g
ki|m ki|m ka|n

ko|n
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(iv): The formula for the inverse now becomes

Definition 71 71 nm
S fn) =~ Z el f(T)
functions

Dirichlet d

Convolution d<n

Matrix
interpretation

Orde:
Infin

Norms

so if gcd(n, m) =1 then

_ , nm nm
S f1(nm) — —Z Fd)F(—) = Z fdido)f(——)
d s
di|n
d<n da|m
Multiplicativity is dida<n
preservei] i)
multiplication
s Assume, by induction that f~! is multiplicative for arguments < nm.

Euler ¢ again

1 itself
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0 1>|<u:e
Zk|n ) for all n iff f(n Zk|n u(n/k) for all n

Proof.

(1): Since the a.f. involved are multiplicative (check!), it suffices to check on prime
powers p". Then (1% p)(p®) =1, and for r > 0

(L*1)( Zu )=1—-14+0+---4+0=0.

(2: f F=fx1lthenf=fxe=Ffx1xpu=Fxp. O
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d(n) =) 1, o(n) =) k
k|n kln

E— We can write this as

arithmetical

d=1x1, o=1xI

Dirichlet
Convolution

Matrix - - - .
from which we conclude that d, o are multiplicative, and that

Order, Norms,
Infinite sums

Definition

Euler ¢

or in other words

e Z w(k)d(n/k) = Z w(k)o(n/k) =
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Q

=

=)
|

Q
|

= Zd|n k_In particular, 09 = d, 01 = 0.

ok Is multiplicative

Suppose gcd(m, n) = 1. Then

mn) =Y d"=) ()" =) dfdf =) df) df = or(m)ox(n)

d|mn di|m di|m di|m da|n
d2|n d2|n




k(aj+1)

p.
0 ou(p---p2) =TI, =

® ¥, d“u(n/d) = n*

Try to prove it yourself! O




1xd=1

In other words, want prove
> d(k) =

k|n
Multiplicative, so put n = p".
If r=0: LHS =1, OK.

If r > 0: LHS=ZJ Od)( —1+Zjlp/ p/~1) = p’, since sum
telescoping. O




d(1)+d(2)+d3)+d(6) +d(12) =1+1+24+24+2+4=12




(m =Y n(k)g = ku(})

kln k|n

Since
1xd =1,

we have that
db=uxI=Ixp
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An n'th root of unity is a complex root to z” = 1. A primitive n'th root of unity is
not a k'th root of unity for smaller k.

Definition
Some common
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functions

Lemma

Convolution

Put &, = exp(%"i). Then the n'th roots of unity are &3, 1 < s < n, and the
primitive n'th roots of unity are £X, gcd(k, n) = 1.

Definition Lemma
Euler ¢
Ifn>1,
n
ot gl _
multiplication n E’ _ 1 - Y
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Let f(d) denote the sum of the primitive

O d'th roots of unity. Then (1) =1, and

Order, Norms,
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hence f = 1. So the Mobius function is

Euler ¢
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the sum of the primitive roots.
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