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Definition

An arithmetical function is a function f : P→ C.

We will mostly deal with integer-valued a.f.

Euler φ is one:

5 10 15 20 25
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Arithmetical functions defined by prime factorization

n = pa1
1 · · · p

ar
r , qi distinct primes

Liouville function λ, Möbius function µ:

ω(n) = r

Ω(n) = a1 + · · ·+ ar

λ(n) = (−1)Ω(n)

µ(n) =

{
λ(n) ω(n) = Ω(n)

0 otherwise
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Arithmetical functions related to divisors

d number of divisors, σ sum of divisors, and you know Euler φ.

d(n) =
∑
k|n

1

σ(n) =
∑
k|n

k

φ(n) =
∑

1≤k<n
gcd(k,n)=1

1
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Even more Arithmetical functions

p prime. Von Mangoldt function Λ, prime-counting function π, Legendre symbol(
n
p

)
, p-valuation vp.

Λ(n) =

{
log q n = qk , q prime

0 otherwise

π(n) =
∑

1≤k≤n
k prime

1

(
n

p

)
=


0 n ≡ 0 mod p

+1 n 6≡ 0 mod p and exists a such that n ≡ a2 mod p

−1 n 6≡ 0 mod p and exists no a such that n ≡ a2 mod p

vp(n) = k , pk |n, pk+1 6 |n
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Important arithmetical functions (not standard notation)

e(n) =

{
1 n = 1

0 n > 1

0(n) = 0

1(n) = 1 often denoted by ζ

I(n) = n

ei (n) =

{
1 n = i

0 n 6= i
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Definition

Let f , g be arithmetical functions. Then their Dirichlet convolution is another a.f.,

defined by

(f ∗ g)(n) =
∑

1≤a,b≤n
ab=n

f (a)g(b) =
∑

1≤k≤n
k|n

f (k)g(n/k) =
∑

1≤`≤n
`|n

f (n/`)g(`) (DC)

Example

(f ∗ g)(10) = f (1)g(10) + f (2)g(5) + f (5)g(2) + f (10)g(1)



Number
Theory,

Lecture 3

Jan Snellman

Arithmetical
functions

Definition

Some common
arithmetical
functions

Dirichlet
Convolution

Matrix
interpretation

Order, Norms,
Infinite sums

Multiplicative
function

Definition

Euler φ
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The algebra of aritmetical functions

• f ∗ (g ∗ h) = (f ∗ g) ∗ h

• f ∗ g = g ∗ f

• There is a unit for this multiplication, e(1) = 1 , e(n) = 0 for n > 1

• Not all a.f. are invertible

• We can add: (f + g)(n) = f (n) + g(n)

• We can scale: (cf )(n) = cf (n)

• 0(n) = 0 is a zero vector

• A C-vector space with multiplication; an algebra.
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Möbius
inversion

Multiplicativity is
preserved by
multiplication

Matrix verification

Divisor functions

Euler φ again

µ itself

Matrix interpretation

• Let n ∈ P and D(n) = { 1 ≤ k ≤ n k |n } be its divisors

• We want to understand a.f. restricted to D(n), in particular their

multiplication

• Given a.f. f , form matrix A with rows and columns indexed by elems in D(n),

and Aij = f (j/i) if i |j , 0 otherwise

• Similarly for a.f. g and matrix B

• Then AB is the matrix for f ∗ g
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Example

• n = 12, D(n) as follows

• 1

2 3

4 6

12

• f = 1

• A = ??

• A ∗ A = ??
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Summation

• F (n) = (1 ∗ f )(n) =
∑

k|n f (k)

• The summation of f

• Sometimes F is known and we want to recover f

•

F (1) = f (1)

F (2) = f (1) + f (2)

F (3) = f (1) + f (3)

F (4) = f (1) + f (2) + f (4)

...
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Inverses

Theorem

f has inverse g = f −1 iff f (1) 6= 0

Proof.

Want f ∗ g = e, so (f ∗ g)(m) = 1 if m = 1, 0 otherwise. Gives

1 = (f ∗ g)(1) = f (1)g(1)

0 = (f ∗ g)(2) = f (1)g(2) + f (2)g(1)

0 = (f ∗ g)(3) = f (1)g(3) + f (3)g(1)

0 = (f ∗ g)(4) = f (1)g(4) + f (2)g(2) + f (4)g(1)

0 = (f ∗ g)(5) = f (1)g(5) + f (5)g(1)

...

0 = (f ∗ g)(n) = f (1)g(n) +
∑
k|n

1<k≤n

f (k)g(n/k)

so, by induction, we can solve for g(n).
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Normed algebra

Definition

If f 6= 0, then the order of f is

ord(f ) = min { n f (n) 6= 0 }

and the norm

‖f ‖ = 2−ord(f )

Lemma

• f =
∑

n f (n)en, i.e., the partial sums of this sum converge to f

• if f (1) = 0 then e + f is invertible, with inverse given by convergent geometric

series:
e

e + f
= e − f + f ∗ f − f ∗ f ∗ f + · · ·
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Definition

• f is totally multiplicative if f (nm) = f (n)f (m)

• f is multiplicative if f (nm) = f (n)f (m) whenever gcd(n,m) = 1

Theorem

Let n =
∏

j p
aj
j , prime factorization. Then

• If f mult then f (n) =
∏

j f (pj), i.e., f is determined by its values at prime

powers

• If f tot mult then f (n) =
∏

j f (p)j , i.e., f is determined by its values at primes

Proof.

Obvious!
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Theorem

The Euler φ function is multiplicative.

Proof

Let gcd(m, n) = 1. Want to prove φ(mn) = φ(m)φ(n), in other words,

|Zmn| = |Zm| |Zn| (1)

Claim: following bijection:

Zmn 3 [a]mn 7→ ([a]m, [a]n) ∈ Zm × Zn (2)
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Proof.

• Well-defined, since a ≡ a ′ mod mn implies a ≡ a ′ mod m and a ≡ a ′

mod n.

• Injective, since a ≡ a ′ mod m and a ≡ a ′ mod n implies a ≡ a ′ mod mn

• Surjective, by the CRT: take c , d , then exists x with

x ≡ c mod m

x ≡ d mod n

so [x ]mn 7→ ([c ]m, [d ]n)
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1 Take p prime

2 Then all 1 ≤ a < p relatively prime to p, so φ(p) = p − 1

3 Now consider prime power pr

4 For 1 ≤ a < pr , gcd(a, pr ) > 1 iff p|n

5 Example: p = 3, r = 2:

1

2

3

4

5

6

7

8

9

6 So φ(pr ) = pr − pr

p = pr
(

1 − 1
p

)
7 For n = pr1

1 · · · prs
s , we have by multiplicativity

φ(pr1
1 · · · p

rs
s ) = φ(p

r1
1 ) · · ·φ(p

rs
s )

= pr1
1 · · · p

rs
s (1 − 1/p1) · · · (1 − 1/ps)

= n
∏
j

(1 − 1/pj)
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Example

• φ(15) = φ(3)φ(5) = 2 ∗ 4 = 8

• φ(16) = φ(24) = 24 − 23 = 8

• φ(120) = φ(23 ∗ 3 ∗ 5) = 120(1− 1/2)(1− 1/3)(1− 1/5) = 120 ∗ (4/15) = 32.
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n = p gives φ(n) = n − 1. This is visible in graph of φ(n).

500 1000 1500 2000 2500 3000
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Theorem

f , g (non-zero) multiplicative arithmetical functions, h = f ∗ g

(i) e is multiplicative

(ii) f (1) = 1, so f is invertible

(iii) h is multiplicative

(iv) f −1 is multiplicative

Proof

(i-ii) Trivial. (iii): Suppose gcd(m, n) = 1. Then

h(mn) = (f ∗ g)(mn) =
∑
k|mn

f (k)g(
mn

k
) =
∑
k1|m
k2|n

f (k1k2)g(
m

k1

n

k2
)

=
∑
k1|m
k2|n

f (k1)f (k2)g(
m

k1
)g(

n

k2
) =
∑
k1|m

f (k1)g(
m

k1
)
∑
k2|n

f (k2)g(
n

k2
) = h(m)h(n)
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Proof.

(iv): The formula for the inverse now becomes

f −1(n) = −
∑
d |n
d<n

f −1(d)f (
nm

d
)

so if gcd(n,m) = 1 then

f −1(nm) = −
∑
d |n
d<n

f −1(d)f (
nm

d
) = −

∑
d1|n
d2|m

d1d2<n

f −1(d1d2)f (
nm

d1d2
)

Assume, by induction that f −1 is multiplicative for arguments < nm.
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Theorem (Möbius inversion)

1 1 ∗ µ = e

2 F (n) =
∑

k|n f (k) for all n iff f (n) =
∑

k|n F (k)µ(n/k) for all n

Proof.

(1): Since the a.f. involved are multiplicative (check!), it suffices to check on prime

powers pr . Then (1 ∗ µ)(p0) = 1, and for r > 0

(µ ∗ 1)(pr ) =

r∑
k=0

µ(pk) = 1 − 1 + 0 + · · ·+ 0 = 0.

(2): If F = f ∗ 1 then f = f ∗ e = f ∗ 1 ∗ µ = F ∗ µ.
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Example

• n = 12, D(n) as follows

• 1

2 3

4 6

12

• f = 1
• A = ??
• g = µ
• C = ??
• AC = ??
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Recall

d(n) =
∑
k|n

1, σ(n) =
∑
k|n

k

We can write this as

d = 1 ∗ 1, σ = 1 ∗ I

from which we conclude that d , σ are multiplicative, and that

µ ∗ d = 1, µ ∗ σ = I

or in other words ∑
k|n

µ(k)d(n/k) = 1,
∑
k|n

µ(k)σ(n/k) = n
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Definition

σk(n) =
∑

d |n dk . In particular, σ0 = d , σ1 = σ.

Lemma

σk is multiplicative

Proof.

Suppose gcd(m, n) = 1. Then

σk(mn) =
∑
d |mn

dk =
∑
d1|m
d2|n

(d1d2)
k =

∑
d1|m
d2|n

dk
1 dk

2 =
∑
d1|m

dk
1

∑
d2|n

dk
2 = σk(m)σk(n)
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Theorem

1 σk(p
a1
1 · · · par

r ) =
∏r

j=1

1−p
k(aj+1)

j

1−pkj

2
∑

d |n dkµ(n/d) = nk

Proof.

Try to prove it yourself!
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Lemma

1 ∗ φ = I

Proof.

In other words, want prove ∑
k|n

φ(k) = n.

Multiplicative, so put n = pr .

If r = 0: LHS = 1, OK.

If r > 0: LHS =
∑r

j=0φ(p
j) = 1 +

∑r
j=1(p

j − pj−1) = pr , since sum

telescoping.
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Divisors of 12

φ(1) + φ(2) + φ(3) + φ(6) + φ(12) = 1 + 1 + 2 + 2 + 2 + 4 = 12
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Theorem

φ(n) =
∑
k|n

µ(k)
n

k
=
∑
k|n

kµ(
n

k
)

Proof.

Since

1 ∗ φ = I,

we have that

φ = µ ∗ I = I ∗ µ



Number
Theory,

Lecture 3

Jan Snellman

Arithmetical
functions

Definition

Some common
arithmetical
functions

Dirichlet
Convolution

Matrix
interpretation

Order, Norms,
Infinite sums

Multiplicative
function

Definition

Euler φ
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Definition

An n’th root of unity is a complex root to zn = 1. A primitive n’th root of unity is

not a k’th root of unity for smaller k.

Lemma

Put ξn = exp(2πn i). Then the n’th roots of unity are ξsn, 1 ≤ s ≤ n, and the

primitive n’th roots of unity are ξkn , gcd(k , n) = 1.

Lemma

If n > 1,
n∑

s=1

ξsn =
ξnn − 1

ξn − 1
= 0.
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Lemma

0 =

n∑
s=1

ξsn =
∑
k|n

∑
gcd(`,k)=1

ξ`n

Let f (d) denote the sum of the primitive

d ’th roots of unity. Then f (1) = 1, and

for n > 1,
∑

d |n f (d) = 0. So 1 ∗ f = e,

hence f = µ. So the Möbius function is

the sum of the primitive roots.
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