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Definition

• p prime

• Zp[x ] the ring of polynomials with coefficients in Zp

• A general such polynomial is

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0

with aj ∈ Zp, an 6= 0.

• n = deg(f (x)).

• lc(f (x)) = an, lm(f (x)) = xn

• The zero polynomial has degree −∞
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Lemma

• deg(fg) = deg(f ) + deg(g),

• deg(f + g) ≤ max(deg(f ),deg(g))

Example

In Z2[x ],

• (x3+x+1)∗(x4+x+1) = x7+x4+x3+x5+x2+x+x4+x+1 = x7+x5+x3+x2+1

• (x3 + x + 1) + (x3 + x2 + 1) = x2 + x
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Evaluation

Definition

If f (x) =
∑n

j=0 cjx
j , a ∈ Zp, then the evaluation of f (x) at x = a is

f (a) =
n∑

j=0

cja
j

Example

• p = 2
• f (x) = 1 (constant 1 polynomial)
• g(x) = x4 + x2 + 1
• f (0) = f (1) = 1
• g(0) = g(1) = 1
• So f and g define the same

polynomial functions Z2 → Z2, but

they are different polynomials
• In fact, two polynomials yield same

function iff they differ by polynomial

multiple of x2 + x
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Theorem (Division algorithm)

Let f (x), g(x) ∈ Zp[x ], g(x) not z.p. Then exists unique k(x), r(x) ∈ Zp[x ],

f (x) = k(x)g(x) + r(x), deg(r(x)) < deg(g(x)) (*)

Proof.

WLOG n = deg(f (x)) ≥ deg(g(x)) = m. Put

f = anxn + ~f , g = bmxm + ~g

and put

f2 = f −
an
bm

xn−mg .

Then deg(f2) < deg(f ), proceed by induction.

Works for coefficients in any field (e.g. Q,R) but not for Z.
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Example

• p = 2

• f (x) = x5 + x2 + x + 1, g(x) = x2 + x

•

f = x3g + (f − x3g)

= x3g + (x4 + x2 + x + 1)

= (x3 + x2)g + (x4 + x2 + x + 1 − x2g)

= (x3 + x2)g + (x3 + x2 + x + 1)

= (x3 + x2 + x)g + (x3 + x2 + x + 1 − xg)

= (x3 + x2 + x)g + (x2 + 1)

= (x3 + x2 + x + 1)g + (x2 + 1 − g)

= (x3 + x2 + x + 1)g + (x + 1)
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Theorem (Factor theorem)

f (x) ∈ Zp[x ], a ∈ Zp. Then f (a) = 0 iff f (x) = k(x)(x − a) for some k(x), i.e.,

the remainder when divided by (x − a) is zero.

Proof.

If f (x) = k(x)(x − a), then RHS(a) = 0, so f (a) = 0.

If f (a) = 0, perform division with remainder:

f (x) = k(x)(x − a) + r(x), deg(r(x)) < deg((x − a)) = 1

So r(x) = r , a constant. Evaluate at a:

0 = f (a) = k(a)(a − a) + r

hence r = 0.
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Theorem (Lagrange)

f (x) ∈ Zp[x ], deg(f (x)) = n. Then f (x) has at most n zeroes in Zp.

Proof.

If a ∈ Zp, f (a) = 0, then f (x) = (x − a)g(x). If f (b) = 0, b 6= a, then

(0 = (b − a)g(b), and g(b) = 0. Since deg(g(x) = n − 1 < n and g(x) contains

the remaining zeroes of f (x), proceed by induction.

Example

f (x) = [2]4x + [2]4 ∈ Z4[x ] has f ([1]4) = [2]4 + [2]4 = [0]4,

f ([3]4) = [6]4 + [2]4 = [0]4.
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Application: Wilson’s theorem

Theorem (Wilson)

p prime. Then (p − 1)! ≡ −1 mod p.

Proof

p = 2: OK.

p > 2: Put f (x) = xp−1 − 1. Fermat: f (k) ≡ 0 mod p for k ∈ {1, 2, . . . , p − 1}.

p − 1 roots in Zp[x ]. Lagrange: no more roots.

Factor thm:

f (x) = (x − 1)q(x) ∈ Zp[x ],

remaining roots in q(x), so

q(k) ≡ 0 mod p, k ∈ {2, 3, . . . , p − 1}
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Proof.

Follows that

f (x) = (x − 1)(x − 2) · · · (x − (p − 1)) ∈ Zp[x ]

Evaluate at zero:

f (0) = (−1)(−2) · · · (−(p − 1)) = (−1)p−1(p − 1)!

In other words

0p−1 − 1 ≡ (−1)p−1(p − 1)! mod p

But p is odd.
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• f (x) = a`x
` + · · ·+ a1x + a0 ∈ Z[x ]

• m, n, r ∈ P, c ∈ Z, p prime

• f (c) = 0 implies f (x) ≡ 0 mod m, not conversely

• f (c) ≡ 0 mod mn implies f (x) ≡ 0 mod m, not conversely

• “Lifting”:
• f (c) ≡ 0 mod pr

• c ≡ c + tpr mod pr but not (always) mod pr+1, different reps if 0 ≤ t ≤ p − 1
• Maybe f (c + tpr ) ≡ 0 mod pr+1 for some t

• “Combining”:
• gcd(m, n) = 1
• f (c) ≡ 0 mod m
• f (c) ≡ 0 mod n

implies f (c) ≡ 0 mod mn (CRT)
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Application: inverses

• f (x) = a`x
` + · · ·+ a1x + a0 ∈ Z[x ]

• m, n, r ∈ P, c ∈ Z, p prime

• f (c) = 0 implies f (x) ≡ 0 mod m, not conversely

• f (c) ≡ 0 mod mn implies f (x) ≡ 0 mod m, not conversely

• “Lifting”:
• f (c) ≡ 0 mod pr

• c ≡ c + tpr mod pr but not (always) mod pr+1, different reps if 0 ≤ t ≤ p − 1
• Maybe f (c + tpr ) ≡ 0 mod pr+1 for some t

• “Combining”:
• gcd(m, n) = 1
• f (c) ≡ 0 mod m
• f (c) ≡ 0 mod n

implies f (c) ≡ 0 mod mn (CRT)



Number
Theory,

Lecture 4

Jan Snellman

Polynomials
with
coefficients in
Zp

Definition, degree

Division algorithm

Lagrange

Wilson’s theorem

Hensel lifting

Polynomial
cogruences

Polynomial
congruences modulo
prime power

Formal derivate

Hensel’s lemma

Application: inverses

• f (x) = a`x
` + · · ·+ a1x + a0 ∈ Z[x ]

• m, n, r ∈ P, c ∈ Z, p prime

• f (c) = 0 implies f (x) ≡ 0 mod m, not conversely

• f (c) ≡ 0 mod mn implies f (x) ≡ 0 mod m, not conversely

• “Lifting”:
• f (c) ≡ 0 mod pr

• c ≡ c + tpr mod pr but not (always) mod pr+1, different reps if 0 ≤ t ≤ p − 1
• Maybe f (c + tpr ) ≡ 0 mod pr+1 for some t

• “Combining”:
• gcd(m, n) = 1
• f (c) ≡ 0 mod m
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Application: inverses

Example

x2 + x + 5 ≡ 0 mod 77

Modulo 7:

0 ≡ x2−6x+5 ≡ (x−3)2−9+5 ≡ (x−3)2−4 ≡ (x−3+2)(x−3−2) ≡ (x−1)(x−5)

Modulo 11: 0 ≡ x2 − 10x + 5 ≡ (x − 5)2 − 25 + 5 ≡ (x − 5)2 − 9 ≡
(x − 5 + 3)(x − 5 − 3) ≡ (x − 2)(x − 8)

Combine using CRT:

x ≡ 1 mod 7

x ≡ 2 mod 11

} ⇐⇒ x ≡ 57 mod 77

Three more solutions, find them as exercise!
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Application: inverses

Example

f (x) = x2 + x + 5, find roots modulo 72.

Note: if f (a) ≡ 0 mod 49, then f (a) ≡ 0 mod 7, but not necessarily conversely.

Roots modulo 7: 1,5. Can we “lift” them to roots modulo 49?

a ≡ 1 mod 7 gives a = 1 + 7s. So the “lifts” are 1, 8, 15, 22, 29, 36, 43. Is one of

them a zero modulo 49?

f (a) = a2 + a + 5 ≡ (1 + 7s)2 + (1 + 7s) + 5 ≡ 1 + 14s + 49s2 + 1 + 7s + 5

mod 72, so

f (a) ≡ 21s + 7 mod 49

For zero, solve
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Application: inverses

Example (cont)

21s ≡ −7 mod 49

3s ≡ −1 mod 7

s ≡ 2 mod 7

hence

a = 1 + 7s ≡ 1 + 7 ∗ 2 ≡ 15 mod 49

Computer check:

R.<t> = Integers(49)[]

f=t^2+t+5

finds

f (15) = ??
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Application: inverses

Example (cont)

Is it the only root?

myroots=f.roots(multiplicities=False)

finds

myroots = ??

Aha, so the “lift” of the root x ≡ 5 mod 7 that works is x = 5 + 7 ∗ 4.
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Definition

• f (x) =
∑

j ajx
j ∈ K [x ]

• K some field (or Z)

• The formal derivate is f ′(x) =
∑

j jajx
j−1

Lemma

f (x + y) ∈ K [x , y ], the polynomial ring with two variables, and

f (x + y) = f (x) + f ′(x)y + g(x , y)y2 (1)

for some g(x , y) ∈ K [x , y ]

Example

f (x) = x3 − x + 2, f ′(x) = 3x2 − 1, f (x + y) = (x + y)3 − (x + y) + 2 =

x3 + 3x2y + 3xy2 + y3 − x − y + 2 = (x3 − x + 2) + (3x2 − 1)y + 3xy2 + y3
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Application: inverses

Proof.

Binomial thm:

(x + y)j = x j + jx j−1y +

(
j

2

)
x j−2y2 + · · ·+ y j = x j + jx j−1y + y2gj(x , y)

Hence:

f (x + y) =
∑
j

aj(x + y)j

= a0 +
∑
j>0

aj(x
j + jx j−1y + gj(x , y)y2) Binomial thm

= a0 +
∑
j>0

ajx
j + y

∑
j>0

aj jx
j−1 + y2

∑
j>0

ajgj(x , y)

= f (x) + yf ′(x) + g(x , y)y2
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Application: inverses

• p prime

• f (x) ∈ Z[x ]
• c ∈ Z, f (c) ≡ 0 mod pr

• Substitute x = c , y = pr s in f (x + y) = f (x) + f ′(x)y + g(x , y)y2

• Get f (c + spr ) = f (c) + f ′(c)pr s + g ∗ (pr s)2, hence

f (c + spr ) ≡ f (c) + f ′(c)pr s mod pr+1

• If f ′(c) 6≡ 0 mod p then f ′(c) 6≡ 0 mod pr+1 and we can solve

(f ′(c)pr )s ≡ −f (c) mod pr+1

uniquely. Divide by pr to get

f ′(c)s ≡ −f (c)

pr
mod p
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Application: inverses

Lemma (Hensel’s lemma)

1 p prime

2 f (x) ∈ Z[x ]
3 f (c) ≡ 0 mod pj

4 f ′(c) 6≡ 0 mod p

Then there is a unique t (mod p) such that

f (c + tpj) ≡ 0 mod pj+1

This t is the unique solution to

tf ′(c) ≡ −f (c)

pj
mod p
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Application: inverses

Lemma (Hensel’s lemma)

1 p prime

2 f (x) ∈ Z[x ]
3 f (c) ≡ 0 mod p

4 f ′(c) 6≡ 0 mod p

Then exists c2, c3, c4, . . . such that

1 cj ≡ c mod p (it is a lift)

2 cj ≡ cj−1 mod pj−1 (it is a lift)

3 f (cj) ≡ 0 mod pj (it is a solution

mod pj

4 cj is unique mod pj

• Lift cj to cj+1 by putting cj+1 = cj + tpj , solve for t mod pj+1

• If f ′(c) ≡ 0 mod p then first lift either non-existent or non-unique
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Application: inverses

Example

• p = 5

• f (x) = x3 + 2

• f has no zeroes in Z or Q, but one in R, and 3 zeroes in C
• f (2) ≡ 0 mod 5

• f ′(x) = 3x2, f ′(2) = 12 6≡ 0 mod 5

• Hensel: lifts uniquely to all powers of 5

• ??
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Application: inverses

Example

• p = 3

• f (x) = x3 + 2

• f (1) ≡ 0 mod 3

• f ′(x) = 3x2, f ′(1) = 3 ≡ 0 mod 3

• Hensel: if it lifts, it lifts not uniquely

• In fact no soln modulo 9
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Application: inverses

Example

• p = 3

• f (x) = ??

• f (2) = ?? ≡ 0 mod 3

• f ′(x) = ??

• f ′(2) = ?? ≡ 0 mod 3

• Hensel: if it lifts, it lifts not uniquely

• In fact lifts in variegated ways:

moduli roots

3 ??

32 ??

33 ??

34 ??

• Not a contradiction to Lagrange
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Application: inverses

Example

• Let’s do the first lift “by hand”

• 0 ≡ f (2 + 3t) ≡ f (2) + f ′(2)3t mod 9

• f (2) happens to be 0 mod 9

• f ′(2) ≡ 3 mod 9

• 3 ∗ 3 ∗ t ≡ 0 mod 9, t is “whatever”

• 2 + 0 ∗ 3, 2 + 1 ∗ 3, 2 + 2 ∗ 3 all valid lifts
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Application: inverses

Exercise from Hackman

• a ∈ Z has inverse b mod pn, so ab ≡ 1 mod pn

• Then ab ≡ 1 mod p, so a, b 6≡ 0 mod p

• Want to lift b to inverse mod pn+1

• f (x) = ax − 1, f (b) ≡ 0 mod pn, f ′(b) = ab 6≡ 0 mod p

• f (b + tpn) ≡ f (b) + f ′(b)tpn ≡ ab − 1 + abtpn ≡ 0 mod pn+1

• Divide by pn

• ab−1
pn + abt ≡ ab−1

pn + t ≡ 0 mod p



Number
Theory,

Lecture 4

Jan Snellman

Polynomials
with
coefficients in
Zp

Definition, degree

Division algorithm

Lagrange

Wilson’s theorem

Hensel lifting

Polynomial
cogruences

Polynomial
congruences modulo
prime power

Formal derivate

Hensel’s lemma

Application: inverses

Example

• 7 ∗ 3 = 21 ≡ 1 mod 5

• Lift 3 to inverse of 7 mod 25

• b = 3 + 5t, 7b ≡ 1 mod 25

• 7 ∗ 3 + 35t ≡ 1 mod 25

• 7 ∗ 3 − 1 + 35t ≡ 0 mod 25

• 20/5 + 7t ≡ 0 mod 5

• t ≡ 3 mod 5

• b ≡ 18 mod 25
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