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Example

5 +
1

3 + 1
11+ 1

2

= 5 +
1

3 + 2
23

= 5 +
23

71
=

378

71
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Example

5 = 5 ≈ 5.000

5 +
1

3
=

16

3
≈ 5.333

5 +
1

3 +
1

11

=
181

34
≈ 5.323

5 +
1

3 +
1

11 +
1

2

=
378

71
≈ 5.324
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Example

720

164
= 4 +

64

164
= 4 +

1
164
64

= 4 +
1

2 + 36
64

= 4 +
1

2 + 1
64
36

= 4 +
1

2 + 1
1+ 28

36

= 4 +
1

2 + 1
1+ 1

36
28

= 4 +
1

2 + 1
1+ 1

1+ 8
28

= 4 +
1

2 + 1
1+ 1

1+ 1
28
8

= 4 +
1

2 + 1
1+ 1

1+ 1

3+ 4
8

= 4 +
1

2 + 1
1+ 1

1+ 1

3+ 1
8
4

= 4 +
1

2 + 1
1+ 1

1+ 1

3+ 1
2



Number Theory, Lecture 7

Jan Snellman

Finite continued
fractions
Examples, simple
properties

Existence and
uniqueness

CF as rational functions

Euler’s rule

Convergents

Applications

Infinite continued
fractions

Diophantine
approximation

Geometric
interpretation

Applications

Periodic continued
fractions

Example (Cont)

Notation:

4 +
1

2 + 1
1+ 1

1+ 1
3+ 1

2

= [4, 2, 1, 1, 3, 2]

Convergents:

[4, ] = 4, [4, 2] = 4 +
1

2
=

9

2

[4, 2, 1] = 4 +
1

2 + 1
1

=
13

3
, [4, 2, 1, 1] = 4 +

1

2 + 1
1+ 1

1

=
22

5

[4, 2, 1, 1, 3] = 4 +
1

2 + 1
1+ 1

1+ 1
3

=
79

18

[4, 2, 1, 1, 3, 2] = 4 +
1

2 + 1
1+ 1

1+ 1

3+ 1
2

=
180

41
=

180 ∗ 4

41 ∗ 4
=

720

164
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Example (Cont)

Compare with Euclides alg:

720 = 4 ∗ 164 + 64

164 = 2 ∗ 64 + 36

64 = 1 ∗ 36 + 28

36 = 1 ∗ 28 + 8

28 = 3 ∗ 8 + 4

8 = 2 ∗ 4

gcd(720, 164) = 4, 720
164 = 180

41 = [4, 2, 1, 1, 3, 2].
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Example

Another example:

45 = 2 ∗ 16 + 13

16 = 1 ∗ 13 + 3

13 = 4 ∗ 3 + 1

3 = 3 ∗ 1 + 0

so
45

16
= [2, 1, 4, 3] = 2 +

1

1 + 1
4+ 1

3

Geometric picture:
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Example

• 31
18 = [1, 1, 2, 1, 1, 2] = 1 + 1

1 +
1

2 +
1

1 +
1

1 +
1

2

• 18
31 = [0; 1, 1, 2, 1, 1, 2] = 0 + 1

1 +
1

1 +
1

2 +
1

1 +
1

1 +
1

2
• [2, 3, 4] = 2 + 1

3+ 1
4

= 2 + 1
3+ 1

3+ 1
1

= [2, 3, 3, 1]
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• If c0 > 0 then 1/[c0, . . . , cn] = [0, c0, . . . , cn]; otherwise

1/[0, c1, . . . , cn] = [c1, . . . , cn]

• If m > 1 then

[0,m] =
1

m
=

1

m − 1 + 1
1

= [0,m − 1, 1]

and similarly

[c0, . . . , cn−1,m] = [c0, . . . , cn−1,m − 1, 1]

We prefer the first form

• We also have that [c0, . . . cn+1] = [c0, . . . , cn−1, cn +
1

cn+1
]
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Theorem

Let a, b be positive integers. Then there is a unique way of writing a/b as

a finite continued fraction, such that

a

b
= [c0, c1, c2, . . . , cn]

with ci ∈ Z, c0 ≥ 0, cj ≥ 1 for j ≥ 1, cn ≥ 2 if n > 0

If a < b then c0 = 0 and

(c1, . . . , cn) 7→ [0, c1, . . . , cn]

is a bijection between finite sequences of positive numbers and Q ∩ [0, 1].
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Proof.

WLOG a > b.

Existence: Euclidean algorithm.

Uniqueness: if a/b = c0 +
1

[c1,c2,...,cn]
= d0 +

1
[d1,d2,...,dn]

, then since
1

[c1,c2,...,cn]
< 1, it follows that c0 = ba/bc, and similarly d0 = ba/bc. Thus

c0 = d0.

Subtract, and consider

1

[c1, c2, . . . , cn]
=

1

[d1, d2, . . . , dn]
=⇒ [c1, c2, . . . , cn] = [d1, d2, . . . , dn]

Then c1 = d1, and so on.
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Example

We tabulate the continued fraction expansion of k/13 for 1 ≤ k ≤ 12:

k CF

1 [0; 13]

2 [0; 6, 2]

3 [0; 4, 3]

4 [0; 3, 4]

5 [0; 2, 1, 1, 2]

6 [0; 2, 6]

7 [0; 1, 1, 6]

8 [0; 1, 1, 1, 1, 2]

9 [0; 1, 2, 4]

10 [0; 1, 3, 3]

11 [0; 1, 5, 2]

12 [0; 1, 12]

Note that the reverse of every CF occurs in the list (possibly written in the

non-standrad form).
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We can explain this phenomena using the following result:

Lemma

Suppose that a0 > 0, [a0, . . . , an] =
A
B , [a0, . . . , an−1] =

C
D . Then

[an, an−1, . . . , a1, a0] =
A

C

Proof.

Needs Euler’s rule.

Example

[2, 3, 7] = 2 +
1

3 + 1
7

=
51

22

[2, 3] = 2 +
1

3
=

7

3

[7, 3, 2] =
51

7
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Rational function

• [c0] = c0,

• [c0, c1] = c0 +
1
c1

= c0c1+1
c1

• [c0, c1, c2] = [c0,
1

[c1,c2]
] = c0 +

1
[c1,c2]

= c0 +
c2

c1c2+1 = c0c1c2+c0+c2
c1c2+1

• [c0, c1, c2, c3] = [c0,
1

[c1,c2,c3]
] = c0 +

1
[c1,c2,c3]

= c0 +
c2c3+1

c1c2c3+c1+c3
=

c0c1c2c3+c0c1+c0c3+c2c3+1
c1c2c3+c1+c3

• In general, [c0, . . . cn+1] = [c0, . . . , cn−1, cn +
1

cn+1
] = c0 +

1
[c1,...,cn+1]

=

[c0, [c1, . . . , cn+1]]

• Thus [c0, . . . , cn] =
pn(c0,...,cn)
qn(c0,...,cn)

with pn, qn ∈ Z[c0, . . . , cn]
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Theorem (Euler’s rule)

Let Ln(c0, . . . , cn) be the polynomial which is the sum of

• the product Tn = c0c1 · · · cn,

• all factors of Tn obtained by removing a consecutive pair cici+1,

• all factors of Tn obtained by removing two disjoint consecutive pairs

cici+1 and c`c`+1,

• all factors obtained by removing three disjoint consecutive pairs, and

so on

Then

• [c0, . . . , cn] =
Ln(c0,...,cn)
Ln−1(c1,...,cn)

• Ln(c0, . . . , cn) = c0Ln−1(c1, . . . , cn) + Ln−2(c2, . . . , cn)

• Ln(c0, . . . , cn) is invariant under reversal of the order of its variables

• Ln(c0, . . . , cn) = cnLn−1(c0, . . . , cn−1) + Ln−2(c0, . . . , cn−2)
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Sketch of proof.

Induction on n. By induction hypothesis,

[c0, . . . , cn] =
Ln(c0, . . . , cn)
Ln−1(c1, . . . , cn)

Then

[c0, . . . , cn, cn+1] = c0 +
1

[c1, . . . , cn]

= c0 +
Ln−1(c1, . . . , cn)

Ln(c0, . . . , cn)

= c0 +
Ln−1(c1, . . . , cn)

Ln(c0, . . . , cn)

=
c0Ln(c0, . . . , cn) + Ln−1(c1, . . . , cn)

Ln(c0, . . . , cn)

=
Ln+1(c0, . . . , cn, cn+1)

Ln(c1, . . . , cn, cn+1)
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Example

• L0(c0) = c0

• L1(c0, c1) = c0c1 + 1

• L2(c0, c1, c2) = c0L1(c1, c2) + L0(c0) = c0(c1c2 + 1) + c0 =

c0c1c2 + c0 + c2

• [c0, c1, c2] =
c0c1c2+c0+c2

c1c2+1

• [3, 5, 7] = 3 + 1
5+ 1

7

= 3∗5∗7+3+7
5∗7+1
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Convergents I

• [c0, . . . , cn] =
Ln(c0,...,cn)
Ln−1(c1,...,cn)

= An
Bn

• [c0] = c0 =
c0
1 = A0

B0

• [c0, c1] = c0 +
1
c1

= c0c1+1
c1

= A1
B1

• Ln(c0, . . . , cn) = cnLn−1(c0, . . . , cn−1) + Ln−2(c0, . . . , cn−2)

• An = cnAn−1 + An−2

• Bn = cnBn−1 + Bn−2

•
[
An

Bn

]
= cn

[
An−1

Bn−1

]
+

[
An−2

Bn−2

]
=

[
An−1 An−2

Bn−1 Bn−2

] [
cn
1

]
•
[
An An−1

Bn Bn−1

]
=

[
An−1 An−2

Bn−1 Bn−2

] [
cn 1

1 0

]
•
∣∣∣∣cn 1

1 0

∣∣∣∣ = −1
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Convergents II

•
∣∣∣∣A0 A1

B0 B1

∣∣∣∣ = ∣∣∣∣c0 c0c1 + 1

1 c1

∣∣∣∣ = −1

• AnBn−1 − An−1Bn =

∣∣∣∣An An−1

Bn Bn−1

∣∣∣∣ = ∣∣∣∣A1 A0

B1 B0

∣∣∣∣ ∣∣∣∣c2 1

1 0

∣∣∣∣ · · · ∣∣∣∣cn 1

1 0

∣∣∣∣ =
(−1)n−1

• Thus, if ci pos integers, gcd(Ai ,Bi ) = 1

• Let α = αn = [c0, . . . , cn] =
An
Bn

. Then for 1 ≤ i ≤ n,

αi − αi−1 =
Ai
Bi

− Ai−1

Bi−1
= (−1)i−1

BiBi−1

• Furthermore |α− αi | < |α− αi−1|
• Furthermore α0 < α2 < · · · < α < · · · < α3 < α1
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Linear Diophantine eqns

• Study ax − by = 1, gcd(a, b) = 1

• Suppose a
b = [c0, . . . , cn]

• Last convergent is An
Bn

= a
b

• From AnBn−1 −An−1Bn = (−1)n−1 we get aBn−1 −An−1b = (−1)n−1

• If n odd: x = Bn−1, y = An−1

• If n even: [c0, . . . , cn] = [c0, . . . , cn − 1, 1], do as above
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The rational number 1393
972 ≈ 1.43312757201646 has the following

convergents:

i CF conv value

0 [1] 1 1.00000000000000

1 [1,2] 3/2 1.50000000000000

2 [1,2,3] 10/7 1.42857142857143

3 [1,2,3,4] 43/30 1.43333333333333

4 [1,2,3,4,5] 225/157 1.43312101910828

5 [1,2,3,4,5,6] 1393/972 1.43312757201646
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The convergents converge to the exact value as follows:
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Example

We want to solve 474x − 151y = 1. The CF is

[3, 7, 5, 4] =
474

151
,

and the second to last convergent is

[3, 7, 5] =
113

36

Since n = 3 is odd, x = 36, y = 113 should be a solution of the linear

Diophantine equation. Indeed,

474 ∗ 36 − 151 ∗ 113 = 1
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Example

We want to solve 113x − 36y = 1. The CF is

[3, 7, 5] =
113

36

and the penultimate convergent is

[3, 7] =
22

7

Since n = 2 is even, x = 7, y = 22 should be a solution of the linear

Diophantine equation with RHS −1. Indeed,

113 ∗ 7 − 36 ∗ 22 = −1

Writing

[3, 7, 5] = [3, 7, 4, 1], [3, 7, 4] =
91

29

gives x = 29, y = 91, which solve the original LDE.
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Finite continued fractions, repetition

• The following treatment is almost verbatim from Stein, Elementary

Number Theory

• Assume a0, a1, . . . are positive real numbers (a0 may be zero)

• For 0 ≤ n ≤ m, the nth convergent of the continued fraction

[a0, . . . , am] is cn = [a0, . . . , an]. These convergents for n < m are

also called partial convergents.

• [a0, a1, . . . , an−1, an] =
[
a0, a1, . . . , an−2, an−1 +

1
an

]
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Theorem

For each n with −2 ≤ n ≤ m, define real numbers pn and qn as follows:

p−2 = 0, p−1 = 1, p0 = a0
q−2 = 1, q−1 = 0, q0 = 1

and for n ≥ 1,

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

Then, for n ≥ 0 with n ≤ m we have

[a0, . . . , an] =
pn
qn

=
anpn−1 + pn−2

anqn−1 + qn−2

(the last equality for n ≥ 1)
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Proof.

We use induction. The assertion is obvious when n = 0, 1. Suppose the

proposition is true for all continued fractions of length n − 1. Then

[a0, . . . , an] = [a0, . . . , an−2, an−1 +
1

an
]

=

(
an−1 +

1
an

)
pn−2 + pn−3(

an−1 +
1
an

)
qn−2 + qn−3

=
(an−1an + 1)pn−2 + anpn−3

(an−1an + 1)qn−2 + anqn−3
=

an−1anpn−2pn−2 + anpn−3

an−1anqn−2 + qn−2 + anqn−3

=
an(an−1pn−2 + pn−3) + pn−2

an(an−1qn−2 + qn−3) + qn−2

=
anpn−1 + pn−2

anqn−1 + qn−2

=
pn
qn
.
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Theorem

For n ≥ 0 with n ≤ m we have

pnqn−1 − qnpn−1 = (−1)n−1 (1)

and

pnqn−2 − qnpn−2 = (−1)nan. (2)

Equivalently,
pn
qn

−
pn−1

qn−1
= (−1)n−1 · 1

qnqn−1

and
pn
qn

−
pn−2

qn−2
= (−1)n · an

qnqn−2
.
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Proof.

The case for n = 0 is obvious from the definitions. Now suppose n > 0

and the statement is true for n − 1. Then

pnqn−1 − qnpn−1 = (anpn−1 + pn−2)qn−1 − (anqn−1 + qn−2)pn−1

= pn−2qn−1 − qn−2pn−1

= −(pn−1qn−2 − pn−2qn−1)

= −(−1)n−2 = (−1)n−1.

This completes the proof of (1). For (2), we have

pnqn−2 − pn−2qn = (anpn−1 + pn−2)qn−2 − pn−2(anqn−1 + qn−2)

= an(pn−1qn−2 − pn−2qn−1)

= (−1)nan.
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Theorem (How Convergents Converge)

The even indexed convergents c2n increase strictly with n, and the odd

indexed convergents c2n+1 decrease strictly with n. Also, the odd indexed

convergents c2n+1 are greater than all of the even indexed convergents

c2m.
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Proof.

The an are positive for n ≥ 1, so the qn are positive. By the previous

theorem, for n ≥ 2,

cn − cn−2 = (−1)n · an
qnqn−2

,

which proves the first claim.

Suppose for the sake of contradiction that there exist integers r and m

such that c2m+1 < c2r . The previous theorem implies that for n ≥ 1,

cn − cn−1 = (−1)n−1 · 1

qnqn−1

has sign (−1)n−1, so for all s ≥ 0 we have c2s+1 > c2s . Thus it is

impossible that r = m. If r < m, then by what we proved in the first

paragraph, c2m+1 < c2r < c2m, a contradiction (with s = m). If r > m,

then c2r+1 < c2m+1 < c2r , which is also a contradiction (with s = r).
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The continued fraction process I

• Let x ∈ R and write

x = a0 + t0

with a0 ∈ Z and 0 ≤ t0 < 1. We call the number a0 the floor of x ,

and we also sometimes write a0 = bxc.
• If t0 6= 0, write

1

t0
= a1 + t1

with a1 ∈ Z, a1 > 0, and 0 ≤ t1 < 1.

• Thus t0 =
1

a1+t1
= [0, a1 + t1], which is a continued fraction

expansion of t0, which need not be simple.
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The continued fraction process II

• Continue in this manner so long as tn 6= 0 writing

1

tn
= an+1 + tn+1

with an+1 ∈ Z, an+1 > 0, and 0 ≤ tn+1 < 1.

• We call this procedure, which associates to a real number x the

sequence of integers a0, a1, a2, . . ., the continued fraction process.
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Example

Let x = 1+
√
5

2 . Then

x = 1 +
−1 +

√
5

2
,

so a0 = 1 and t0 =
−1+
√
5

2 . We have

1

t0
=

2

−1 +
√

5
=

−2 − 2
√

5

−4
=

1 +
√

5

2
,

so a1 = 1 and t1 =
−1+
√
5

2 . Likewise, an = 1 for all n. As we will see

below, the following exciting equality makes sense.

1 +
√

5

2
= 1 +

1

1 + 1
1+ 1

1+ 1

1+ 1
1+···
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Lemma

For every n such that an is defined, we have

x = [a0, a1, . . . , an + tn],

and if tn 6= 0, then x = [a0, a1, . . . , an,
1
tn
].

Proof.

We use induction. The statements are both true when n = 0. If the second

statement is true for n − 1, then

x =

[
a0, a1, . . . , an−1,

1

tn−1

]
= [a0, a1, . . . , an−1, an + tn]

=

[
a0, a1, . . . , an−1, an,

1

tn

]
.

Similarly, the first statement is true for n if it is true for n − 1.
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Theorem

Let a0, a1, . . . be a sequence of integers such that an > 0 for all n ≥ 1,

and for each n ≥ 0, set cn = [a0, a1, . . . an]. Then limn→∞ cn exists.

Proof.

For any m ≥ n, the number cn is a partial convergent of [a0, . . . , am]. We

know that the even convergents c2n form a strictly increasing sequence

and that the odd convergents c2n+1 form a strictly decreasing sequence.

Moreover, the even convergents are all ≤ c1 and the odd convergents are

all ≥ c0. Hence α0 = limn→∞ c2n and α1 = limn→∞ c2n+1 both exist, and

α0 ≤ α1. Finally,

|c2n − c2n−1| =
1

q2n · q2n−1
≤ 1

2n(2n − 1)
→ 0,

so α0 = α1.
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Theorem

Let x ∈ R be a real number. Then x is the value of the (possibly infinite)

simple continued fraction [a0, a1, a2, . . .] produced by the continued

fraction procedure.
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Proof

• If the sequence is finite, then some tn = 0 and the result follows

• Suppose the sequence is infinite.

• Then

x = [a0, a1, . . . , an,
1

tn
].

• By a previous result (which we apply in a case when the partial

quotients of the continued fraction are not integers), we have

x =
1
tn
· pn + pn−1

1
tn
· qn + qn−1

.
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Proof (contd)

Thus, if cn = [a0, a1, . . . , an], then

x − cn = x −
pn
qn

=
1
tn
pnqn + pn−1qn −

1
tn
pnqn − pnqn−1

qn
(

1
tn
qn + qn−1

) .

=
pn−1qn − pnqn−1

qn
(

1
tn
qn + qn−1

)
=

(−1)n

qn
(

1
tn
qn + qn−1

) .
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Proof (contd)

Thus

|x − cn| =
1

qn
(

1
tn
qn + qn−1

)
<

1

qn(an+1qn + qn−1)

=
1

qn · qn+1
≤ 1

n(n + 1)
→ 0.

In the inequality, we use that an+1 is the integer part of 1
tn

, and is hence

≤ 1
tn

.
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Approximating reals with rationals

• Z ⊂ Q ⊂ R
• Q is dense in R
• Thus, given α ∈ R and R 3 ε > 0, exists p, q ∈ Z with |α− p

q | < ε

• However, |q| may be very large

• Would like a compromise between good approximation and small

denominator

• Continued fractions are very useful! They provide “the best”

approximations, and can actually be used to show that certain

numbers have few “good” approximations

• Applications:

• Proving inequalities
• Recognizing that α actually was a rational number
• Proving that a real number is transcendental (Roth’s theorem)
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Obvious approximation

Lemma

For α ∈ R, Z 3 N > 1, there are p, q ∈ Z with

|α−
p

q
| <

1

N
, |q| ≤ N

Proof.

WLOG α > 0. Take q = N, p = bαNc.
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Dirichlet’s pigenhole

Theorem

For α ∈ R, Z 3 N > 1, there are p, q ∈ Z with

|αq − p| <
1

N
, |q| ≤ N

Proof

• Consider the N + 1 numbers

{0} , {α} , {2α} , . . . , {Nα} ∈ [0, 1)
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Proof (contd)

• Subdivide [0,N) into N intervals[
0,

1

N

)
,

[
1

N
,

2

N

)
, . . . ,

[
N − 1

N
, 1

)
• At least one “collision”: i 6= j , and m s.t.

{iα} , {jα} ∈
[
m

N
,
m + 1

N

)
• q = j − i , 0 < q ≤ N

• iα = s + {iα}, jα = t + {jα}

• (j − i)α = t − s + {jα}− {iα}

• p = t − s, then

|qα− p| = |(j − i)α− (t − s)| = | {jα}− {iα} | <
1

N
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Theorem (Kronecker)

Let α be irrational. For all real β and all ε > 0, there exists integers A, c

with

|aα− β− c | < ε

In other words, the sequence ({nα})∞n=1 is dense in [0, 1).

Proof

• Dirichlet: exists integers a, b with |aα− b| < ε, 0 < a ≤ 1
ε

• α irrational, so 0 < |aα− b|

• Assume WLOG that aα− b > 0, then

0 < aα− b = {aα} < ε
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Proof (contd)

•
0, {1aα} , {2aα} , · · · ∈ [0, 1)

and the distance between two closest points is < ε

• So

{kaα} ≤ {β} < {(k + 1)aα}

some k, intervall length < ε

• So

0 < {β}− {kaα} < ε

• Hence exists integers A, c with

|Aα− β− c | < ε
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From the proof of theorem on convergence of continued fractions we

extract the following extremely useful tidbit:

Theorem (Convergence of continued fraction)

Let a0, a1, . . . define a simple continued fraction, and let

x = [a0, a1, . . .] ∈ R be its value. Then for all m,∣∣∣∣x −
pm
qm

∣∣∣∣ < 1

qm · qm+1
<

1

m2
.

In other words,

|xqm − pm| <
1

qm+1
<

1

m + 1
.
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Surprisingly, algebraic numbers (which should be more similar to rationals

compared to transcendental numbers) can not be approximated better

than that:

Theorem (Roth)

Let α ∈ R and suppse there exists a positive real number ε such that∣∣∣∣α−
p

q

∣∣∣∣ < 1

q2+ε

for infinitely many different rationa numbers p
q . Then α is transcendental.
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You can not find better rational approximations than the convergents

stemming from continued fractions:

Theorem

Let α ∈ R, s, r ∈ Z. Let, for positive k , ck = pk/qk be the k ’th partial

convergent of in the continued fraction expansion α = [a0, a1, a2, . . . ].

• If |sα− r | < |qkα− pk | then s ≥ qk+1

• If
∣∣α− r

s

∣∣ < ∣∣∣α− pk
qk

∣∣∣ then s > qk

• If
∣∣α− r

s

∣∣− 1
2s2

then r
s is some partial convergent of α.

Proof.

We show how the second part follows from the first. If s ≤ qk and

|α− r/s | < |α− pk/qk | then, multiplying the inequalities, we get

s |α− r/s | < qk |α− pk/qk |

hence

|sα− r | < |qkα− pk |,

a contradiction.
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• 0 < α ∈ R
• Study the line y = αx with slope α

• Lattice points (q, p) ∈ Z2 that are close to the line correspond to

rational approximations p/q that are close to α

• If α 6∈ Q then the line splits lattice points in pos quadrant in two

parts, one above and one below

• Vertices of the convex hulls of these subsets correspond to best

approximations, i.e. to partial convergents

• The recursions

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

can be interpreted as a recursion for directional vectors:(
qn
pn

)
= an

(
qn−1

pn−1

)
+

(
qn−2

pn−2

)
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Example

Let α =
√

2. Rather than looking at the infinitely many lattice points in

the positive quadrant, we split [0, 20]2 into two parts, onew with y >
√

2x ,

one with y <
√

2x .

Relevant vertices of convex hull: (1, 1), (5, 7)
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Example

Relevant vertices of convex hull: (2, 3), (12, 17)

Convergents of
√

2 = [1, 2, 2, 2, 2, . . . ] is 1, 3/2, 7/5, 17/12, . . . .
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Example

10
7 = 1 + 1

2+ 1
3
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Approximating real numbers, recognizing rational

numbers

• General principle: if an large, then |[a0, . . . , an−1] − [a0, . . . , an−1, an]|
small

• Cutting of at this point makes an unusually good approximation
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Example

• α = 1234
6789 ≈ 0.181764619237001 0310796877301517160

11194579466784504345 26439829135366033289

14420385918397407571 07084990425688613934 3054941817646192

• Since gcd(1234, 6789) = 1 and gcd(2, 6789) = 1 and

gcd(5, 6789) = 1 and ord6789(10) = 120, thm 12.4 in Rosen gives

that the decimal expansion of α is periodic, right off the bat, with

period 120. You can see 181764etc occuring right at the end

• Given just the decimal expansion of α, you thus need at least 120

digits to recognize it as a rational
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Example

• α = [0; 5, 1, 1, 153, 1, 3].

• We calculate the CF of truncations of the decimal expansion of α.

• We swiftly get the correct answer by truncating before huge entry;

recall that [a0, . . . ,m] = [a0, . . . ,m − 1, 1]
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k n(α, k) CF

1 0.1 [0; 10]

2 0.18 [0; 5, 1, 1, 4]

3 0.181 [0; 5, 1, 1, 9, 1, 1, 4]

4 0.1817 [0; 5, 1, 1, 69, 2, 1, 1, 2]

5 0.18176 [0; 5, 1, 1, 141, 2]

6 0.181764 [0; 5, 1, 1, 151, 1, 73, 2]

7 0.1817646 [0; 5, 1, 1, 153, 1, 2, 3, 1, 1, 1, 4, 5, 1, 2]

8 0.18176461 [0; 5, 1, 1, 153, 1, 2, 1, 1, 1, 1, 2, 54, 7, 1, 2]

9 0.181764619 [0; 5, 1, 1, 153, 1, 2, 1, 90, 1, 3, 1, 9, 1, 1, 2, 1, 1, 2]

10 0.1817646192 [0; 5, 1, 1, 153, 1, 2, 1, 585, 1, 1, 1, 1, 1, 19]

11 0.18176461923 [0; 5, 1, 1, 153, 1, 2, 1, 3098, 3, 1, 1, 18, 1, 4, 1, 5]
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Number of days in a year

Example

The number of days (rotations around the earth’s axis) in a year (one

revolution around the sun) is approximately

α = 365.2422 = [365, 4, 7, 1, 3, 4, 1, 1, 2]

The second convergent is

α ≈ 365.25 = 365 +
1

4

which gives a calendar with a leap year every fourth year. The fourth

convergent gives

α ≈ [365, 4, 7, 1] = 365 +
8

33
≈ 365.2424 . . .
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Example (contd)

The Gregorian calendar has

• A leap year every fourth year

• Except, if the year is divisibly by 100, no leap year

• Except, if actually divisible by 400, a leap year

Thus the number of days per year is

365 +
1

4
−

1

100
+

1

400
= 146097/400 = [365, 4, 8, 12] = 365.2425

which is very close to 365 + 8
33 ≈ 365.2424
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Example (Lunar calendar)

The number of lunations (revolutions of the moon around the earth) in

one year is approximately

β ≈ 12.368267 ≈ [12; 2, 1, 2, 1, 1, 17, 2, 2, 15]

We use the fifth convergent,

[12; 2, 1, 2, 1, 1] = 235/19

to explain the 19-year Metonic cycle in the hebrew calendar:

235 = 19 ∗ 12 + 7

and the Hebrew calendar inserts 7 extra months in one 19-year Metonic

cycle.



Number Theory, Lecture 7

Jan Snellman

Finite continued
fractions

Infinite continued
fractions

Diophantine
approximation

Geometric
interpretation

Applications
Recognizing a rational
number

Calendar

Huygen’s planetarium

Periodic continued
fractions

Huygen’s planetarium

Huygen’s mechanical model of the solar system used gear ratios to

produce properly scaled planetary orbits. For example, since the time it

takes for Saturn to make one revolution around the sun is, measured in

earth years, approximately

77708431

2640858
= 29.425448 · · · = [29, 2, 2, 1, 5, 1, 4, . . . ]

we can use the fourth convergent

[29, 2, 2, 1] =
206

7

to make a gear with 7 teeth for earth, and a gear with 206 teeth for

Saturn.
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Example

The golden ratio Φ is the positive root of the polynomial

x2 = x + 1,

so

x = 1 +
1

x
.

Iterating, we get

x = 1 +
1

x
= 1 +

1

1 + 1
x

= 1 +
1

1 + 1
1+ 1

x

= · · · = [1, 1, 1, . . . ]
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Definition

• An infinite CF α is periodic with (least) period k and preperiod N if

α = [a0, a1, a2, . . . ]

with

• am+k = am for all m ≥ N
• k is smallest with this property
• N is smallest with this property

• We write

α = [a0, . . . , aN−1, aN , . . . , aN+k−1]

• If the preperiod is 0 the α has a purely periodic CF expansion
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Example

• Let α0 = α =
√

2

• a0 = dα0e = 1, t0 = α0 − a0 =
√

2 − 1

• α1 =
1
t0

= 1√
2−1

=
√
2+1
2−1 =

√
2 + 1

• a1 = dα1e = 2, t1 = α1 − 2 =
√

2 − 1 = t0

• α2 = α1, but we always have α1 = a1 +
1
α2

• So α1 is a solution to t = 2 + 1
t , or t2 − 2t − 1 = 0, and

α1 = [2, 2, 2, . . . ] = [2]

• Finally, α = α1 − 1 = [1, 2, 2, . . . ] = [1, 2]
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Example

Suppose that

β = [3, 5, 7, 11]

γ = [7, 11]

Then

γ = 7 +
1

11 + 1/γ
= 7 +

γ

11γ+ 1
=

78γ+ 7

11γ+ 1

so γ is a root of

11t2 − 77t − 7,

in fact, γ = 9
22

√
77 + 7

2 Furthermore,

β = 3 +
1

5 + 1
γ

=
9

442

√
77 +

1333

442
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Definition

• Let α ∈ R be algebraic over Q, with [Q(α) : Q] = 2, id est, α 6∈ Q
and exists A,B,C ∈ Z such α is a zero of the polynomial

At2 + Bt + C = 0

Then α is called a quadratic irrationality.

• The other zero of this polynomial is called the algebraic conjugate of

α, and is denoted α ′. Thus

At2 + Bt + C = A(t − α)(t − α ′)

• α is reduced if α > 1 and −1 < α ′ < 0
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Lemma

Let α be the the previous quadratic irrationality

• If r , s, t, u are integers, then

rα+ s

tα+ u
∈ Q(α)

so it is rational or a quadratic irrationality

• α = (a +
√
b)/c with a, b, c integers, b > 0, b not a perfect square

• Then α ′ = (a −
√
b)/c

• This conjugation extends to a field automorphism on Q(α) by

(rα+ s) ′ = rα ′ + s
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Lemma

If α is a quadratic irrationality, then

α =
P +
√
d

Q

with P,Q, d integers, d > 0, d not a perfect square, Q|(d − P2)

Proof.

α =
a +
√
b

c
=

|c |a + |c |
√
b

|c |c
=

|c |a +
√
bc2

|c |c
=

P +
√
d

Q
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Theorem (Lagrange)

The continued fraction expansion of a real number x is

• finite if and only if x is rational

• ultimately periodic if and only if x is a quadratic irrationality

• purely periodic if and only if x is a reduced quadratic irrationality

Example

• 173
37 = [4, 1, 2, 12]

• 5+
√
3

2 = [3, 2, 1]

• 1+
√
3

2 = [1, 2]
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Theorem

Let α be a quadratic irrationality. The the following algorithm calculates

the continued fraction expansion of α:

1 INITIALIZE:

• α0 = α

• α0 =
P0+

√
d

Q0

• k = 0

2 UPDATE:

• ak = bαkc
• Pk+1 = akQk − Pk

• Qk+1 = (d − P2
k+1)/Qk

Then for there exists some n so that for k > n, 0 < Qk ≤ d ,

−
√
d < Pk <

√
d , so eventually there is some N, ` such that PN = PN+`,

QN = QN+`, and the algorithm starts repeating itself cyclically.
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Example

• α = α0 =
√

5 = 0+
√
5

1

• a0 = 2, P0 = 0,Q1 = 1

• P1 = a0Q0 − P0 = 2, Q1 = (5 − P2
1 )/Q0 = 1

• α1 =
2+
√
5

1 , a1 = 4

• P2 = a1Q1 − P1 = 2, Q2 = (5 − P2
2 )/Q1 = 1

• Repeating, so
√

5 = [2, 4]
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What about algebraic numbers of higher degree?

• • Quadratic number
• ultimately periodic CF [a0, a1, a2, . . . ]
• 1-automatic, i.e. produced by finite state automaton with input

alphabet of size one

• Higher degree: CF not automatic sequence

• Khintchine: for “almost all” reals the geometric mean
(∏n

j=1 aj

)1/n
tends to my constant!

• Though the CF of algebraic numbers of higher degree lack structure,

thay can still be computed efficiently
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Example

• f0(t) = t3 − 2, α0 = 21/3 = [1; 3, 1, 5, 1, 1, 4, . . . ], but we don’t know

that

• We do know that 1 < α0 < 2, since f0(1) < 0 and f0(2) > 0

• So a0 = 1, (and α1 = [3, 1, 5, 1, 1, 4, . . . ])

• f1(t) = −t3f0(a0 + 1/t) = t3 − 3t2 − 3t − 1

• f1(3) < 0, f1(4) > 0, so a1 = 3

• f2(t) = −t3f1(a1 + 1/t) = 10t3 − 6t2 − 6t − 1

• f2(1) < 0, f2(2) > 0, so a2 = 1

• Et cetera

• One can show that each fk(t) has a single zero, which is αk , and

which is located between ak and ak + 1, and that f (ak) < 0,

f (ak + 1) > 0
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