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Theorem

Let n be a positive integer. If n ≡ 3 mod 4 then n can not be written as

the sum of two squares (of integers).

Proof.

x 0 1 2 3

x2 0 1 0 1

y y2

0 0 0 1 0 1

1 1 1 2 1 2

2 0 0 1 0 1

3 1 1 2 1 2
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Composites

Lemma

If m, n are sums of two squares, then so is mn.

Proof.

Suppose m = a2 + b2, n = c2 + d2. Then

mn = (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2

Note that if we put z = a + ib, w = c + id , then |z |2 = zz = a2 + b2,

|w |2 = ww = c2 + d2, |z |2|w |2 = (a2 + b2)(c2 + d2),

|zw |2 = (ac + bd)2 + (ad − bc)2.
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Theorem

Every prime p, p ≡ 1 mod 4, can be written as a sum of two squares.

Proof.

Deferred.

Note that 2 = 12 + 12, and that primes congruent to 3 mod 4 can not be

written as a sum of two squares.
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Lemma

If p prime, p = 4m + 1, m integer, then exists x , y , k pos integers with

x2 + y2 = kp, k < p.

Proof. (
−1

p

)
≡ (−1)(p−1)/2 = (−1)2m = 1 mod p

so −1 is a QR mod p. Thus exists 0 < a < p, a2 ≡ −1 mod p. Thus

p|(a2 + 1), so a2 + 1 = a2 + 12 = kp some k . Since

kp = x2 + 12 ≤ (p − 1)2 + 1 < p2

it follows that k < p.
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Proof (that p = 4k + 1 is sum of two squares)

• Let m be smallest such that mp = x2 + y2. We will show that m = 1.

• Suppose m > 1, and put a ≡ x mod m, b ≡ y mod m,

−m/2 < a ≤ m/2, −m/2 < b ≤ m/2. Then

a2 + b2 ≡ x2 + y2 = mp ≡ 0 mod m.

• So exists k s.t. a2 + b2 = km.

• We have (a2 + b2)(x2 + y2) = (km)(mp) = kmp2.

• We also have that (a2 + b2)(x2 + y2) = (ax + by)2 + (ay − bx)2

• Furthermore ax + by ≡ x2 + y2 ≡ 0 mod m, ay − bx ≡ xy − yx ≡ 0

mod m.

•
(
ax+by

m

)2
+
(
ay−bx

m

)2
= km2p/m2 = kp (misprint in Rosen)

• Will show 0 < k < m, a contradiction (hence m > 1 was false)
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Proof (contd)

• a2 + b2 = km, −m/2 < a ≤ m/2, −m/2 < b ≤ m/2.

• So a2 ≤ m2/4, b2 ≤ m2/4.

• Thus 0 ≤ km = a2 + b2 ≤ m2/4 +m2/4 = m2/2.

• Hence 0 ≤ k ≤ m/2. So k < m. Remains to show that k > 0.

• But if k = 0 then a2 + b2 = 0, so a = b = 0, so x ≡ y ≡ 0 mod m,

so m|x and m|y . Furthermore x2 + y2 = mp, hence m2|mp, hence

m|p. But m < p, so must have m = 1.
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Theorem

The positive integer n =
∏

p p
ap can be written as a sum of two squares

iff ap is even for all p ≡ 3 mod 4.

Proof

• 2 sum of two squares

• Every p = 4k + 1 sum of two squares

• Every product of integers that are sums of two squares is a sum of

two squares

• Every square is the sum of two squares

• Hence, if ap even every p = 4k + 1, then n product of integers which

are sums of two squares, hence a sum of two squares
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Proof (contd)

• Now suppose p ≡ 3 mod 4, ap = 2j + 1. Will show that n not the

sum of two squares.

• Suppose not, n = x2 + y2

• d = gcd(x , y), a = x/d , b = y/d , m = n/d2, gcd(a, b) = 1,

a2 + b2 = m.

• ap = 2j + 1 = vp(n), k = vp(d), vp(m) = 2j + 1 − 2k ≥ 0, hence ≥ 1.

So p|m.

• gcd(a, b) = 1, m = a2 + b2, p|m, so p 6 |a.

• So aX ≡ b mod p solvable, with soln X = z say

• a2 + b2 ≡ a2 + (az)2 = a2(1 + z2) mod p

• But a2 + b2 = m, p|m, so a1(1 + z2) ≡ 0 mod p

• gcd(a, p) = 1 so by cancellation 1 + z2 ≡ 0 mod p. So z2 ≡ −1

mod p. But
(
−1
p

)
= −1 since p ≡ 3 mod 4. Contradiction.
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Example

• 23 ∗ 35 = 1944 can not be written as a sum of two squares

• 23 ∗ 133 = 17576 can be written as a sum of two squares;

2 = 12 + 12

22 = 22 + 02

23 = (1 ∗ 2 + 0)2 + (1 ∗ 0 − 1 ∗ 2)2 = 22 + 22

13 = 22 + 32

132 = 132 + 02

133 = (2 ∗ 13 + 3 ∗ 0)2 + (2 ∗ 0 − 3 ∗ 13)2 = 262 + 392

23 ∗ 133 = (2 ∗ 26 + 2 ∗ 39)2 + (2 ∗ 39 − 2 ∗ 26)2 = 1302 + 262
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3 squares not enough

Example

7 can not be written as a sum of 3 squares: modulo 8, a square takes the

values 0, 1, 4, thus (assume x2 ≥ y2 ≥ z2)

x2 y2 z2 x2 + y2 + z2

0 0 0 0

1 0 0 1

4 0 0 4

1 1 0 2

4 1 0 5

4 4 0 0

1 1 1 3

4 1 1 6

4 4 1 1

4 4 4 4
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Composites

Theorem

If m, n are sums of fours squares, then so is mn.

Proof.

Suppose m = a2 + b2 + c2 + d2, n = e2 + f 2 + g2 + h2. Then

mn = (a2 + b2 + c2 + d2)(e2 + f 2 + g2 + h2) = R2 + S2 + T 2 + U2

with

R = ae + bf + cg + dh

S = af − be + ch − dg

T = ag − bh − ce + df

U = ah + bg − cf − de
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As in the case of two squares, where the formula for compunding sums of

two squares was given by multiplication of Gaussian integers, this formula

can be remembered/derived by making use of the “Hamiltonian integers”

α = a + bi+ cj+ dk

β = e + f i+ g j+ hk

and their norms.

Recall:

i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j,

and the i, j,k anti-commute pairwise.
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Lemma

If p > 2 is prime, then exists integer 0 < k < p such that

x2 + y2 + z2 + w2 = kp

has an integer solution (x , y , z ,w).

Proof

• First we find integer solns to x2 + y2 + 1 ≡ 0 mod p, with

0 ≤ x < p/2, 0 ≤ y < p/2.

• Put S =
{
j2 0 ≤ j ≤ (p − 1)/2

}
,

T =
{
−1 − j2 0 ≤ j ≤ (p − 1)/2

}
. All elems in S non-congruent

mod p, since j21 ≡ j22 mod 2 implies 0 ≡ j21 − j22 = (j1 + j2)(j1 − j2)

mod p, hence j1 ≡ j2 mod p or j1 ≡ −j2 mod p, contradicts

0 ≤ j ≤ (p − 1)/2.

• Similarly, all elems in T non-congruent mod p.
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Proof (contd)

• S , T disjoint, both contain (p+ 1)/2 elems, so S ∪T has p+ 1 elems

• Only p congruence classes mod p

• Pigeonhole principle (and above): exists 0 ≤ x , y ≤ (p − 1)/2,

x2 ∈ S , −1 − y2 ∈ T , and x2 ≡ −1 − y2 mod p

• So x2 + y2 + 1 ≡ 0 mod p

• So x2 + y2 + 1 = kp for some integer k > 0

• But kp = x2 + y2 + 1 ≤ 2 ((p − 1)/2)2 + 1 < p2, so k < p.
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Theorem

Every prime p can be written as p = x2+ y2+ z2+w2 with x , y , z ,w ∈ Z.

Proof (sketch)

• Similar to proof that every p = 4k + 1 is sum of two squares: use

lemma to assert that mp = x2 + y2 + z2 + w2 some m, let m be

minimal, show m = 1.

• We’ll do half of the proof, the rest is in Rosen

• To start, p = 2 OK since 2 = 12 + 12 + 02 + 02

• m smallest positive integer such that mp = x2 + y2 + z2 + w2

• Assume, toward contradiction, that m > 1.
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Proof (contd)

• Maybe m is even?

• Among x , y , z ,w , and even number of even integers

• Permute, then x ≡ y mod 2, z ≡ w mod 2

• a = (x − y)/2, b = (x + y)/2, c = (z − w)/2, d = (z + w)/2 all

integers

• a2+b2+ c2+d2 = 1
4

(
(x − y)2 + (x + y)2 + (z − w)2 + (z + w)2

)
=

1
2(x

2 + y2 + z2 + w2) = 1
2mp

• Contradicts minimality of m

• Maybe m is odd?

• Check Rosen why impossible
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Theorem

Every positive integer n can be written as the sum of four squares.

Proof.

• n =
∏

p p
ap

• Each p sum of four squares

• By lemma on composites, each pap sum of four squares

• By same lemma, n is the sum of four squares
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Example

3 = 12 + 12 + 12 + 02

5 = 22 + 12 + 02 + 02

4 = 22 + 02 + 02 + 02 = 12 + 12 + 12 + 12

15 = 32 + 22 + 12 + 12

20 = 42 + 22 + 02 + 02 = 32 + 32 + 12 + 12
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Generating functions

Theorem

∏
j

1

1 − st j2
=
∑
n

tn
∑
v

(cn,v s
v )

where cn,v counts the number of ways of writing n as a sum of v squares.

If we want to find these ways, they are encoded in the correspinding

monomial in ∏
j

1

1 − st j2uj
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Example

The coefficent of t20 in ∏
j

(1 − st j
2
uj)

−1

is

s20u201 + s17u161 u2 + s14u121 u22 + s12u111 u3 + s11u81u
3
2+

s9u71u2u3 + s8u41u
4
2 + s6u31u

2
2u3 +

(
u52 + u41u4

)
s5 + s4u21u

2
3 + s2u2u4

from which we extract the information that

• 20 can be written uniquely as a sum of two squares as 22 + 42

• 20 can be written uniquely as a sum of four sqaures as

12 + 12 + 32 + 32

• 20 can be written as a sum of five squares in precisely two ways,

namely 22 + 22 + 22 + 22 + 22 and 12 + 12 + 12 + 12 + 42
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Example

The taylor expansion of order 3 of∏
j

(1 − st j
2
)−1

is a formal power series in t, which starts as

s2t20 + s3t19 +
(
s3 + s2

)
t18 +

(
s3 + s2

)
t17+

st16 + s3t14 + s2t13 + s3t12 + s3t11 + s2t10+(
s3 + s

)
t9 + s2t8 + s3t6 + s2t5 + s3t3 + st4 + s2t2 + st + 1

We see that t3, t7, t15 are missing: 3, 5 are primes congruent to 3 mod 4,

and 15 contains one such prime to an odd exponent.
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